Lane detection with Position Embedding
- URL: http://arxiv.org/abs/2203.12301v1
- Date: Wed, 23 Mar 2022 09:48:59 GMT
- Title: Lane detection with Position Embedding
- Authors: Jun Xie, Jiacheng Han, Dezhen Qi, Feng Chen, Kaer Huang, Jianwei Shuai
- Abstract summary: We present a novel module to enrich lane feature after preliminary feature extraction with an ordinary CNN.
On the basis of RESA, we introduce the method of position embedding to enhance the spatial features.
The experimental results show that this method has achieved the best accuracy 96.93% on Tusimple dataset.
- Score: 14.720302401952157
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recently, lane detection has made great progress in autonomous driving. RESA
(REcurrent Feature-Shift Aggregator) is based on image segmentation. It
presents a novel module to enrich lane feature after preliminary feature
extraction with an ordinary CNN. For Tusimple dataset, there is not too
complicated scene and lane has more prominent spatial features. On the basis of
RESA, we introduce the method of position embedding to enhance the spatial
features. The experimental results show that this method has achieved the best
accuracy 96.93% on Tusimple dataset.
Related papers
- RCLane: Relay Chain Prediction for Lane Detection [76.62424079494285]
We present a new method for lane detection based on relay chain prediction.
Our strategy allows us to establish new state-of-the-art on four major benchmarks including TuSimple, CULane, CurveLanes and LLAMAS.
arXiv Detail & Related papers (2022-07-19T16:48:39Z) - Lane Detection with Versatile AtrousFormer and Local Semantic Guidance [92.83267435275802]
Lane detection is one of the core functions in autonomous driving.
Most existing methods tend to resort to CNN-based techniques.
We propose Atrous Transformer (AtrousFormer) to solve the problem.
arXiv Detail & Related papers (2022-03-08T13:25:35Z) - Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection [99.16162624992424]
We devise a simple but effective voxel-based framework, named Voxel R-CNN.
By taking full advantage of voxel features in a two stage approach, our method achieves comparable detection accuracy with state-of-the-art point-based models.
Our results show that Voxel R-CNN delivers a higher detection accuracy while maintaining a realtime frame processing rate, emphi.e, at a speed of 25 FPS on an NVIDIA 2080 Ti GPU.
arXiv Detail & Related papers (2020-12-31T17:02:46Z) - RONELD: Robust Neural Network Output Enhancement for Active Lane
Detection [1.3965477771846408]
Recent state-of-the-art lane detection algorithms utilize convolutional neural networks (CNNs) to train deep learning models.
We present a real-time robust neural network output enhancement for active lane detection (RONELD)
Experimental results demonstrate an up to two-fold increase in accuracy using RONELD.
arXiv Detail & Related papers (2020-10-19T14:22:47Z) - RESA: Recurrent Feature-Shift Aggregator for Lane Detection [32.246537653680484]
We present a novel module named REcurrent Feature-Shift Aggregator (RESA) to enrich lane feature after preliminary feature extraction with an ordinary CNN.
RESA can conjecture lanes accurately in challenging scenarios with weak appearance clues by aggregating sliced feature map.
Our method achieves state-of-the-art results on two popular lane detection benchmarks (CULane and Tusimple)
arXiv Detail & Related papers (2020-08-31T16:37:30Z) - Heatmap-based Vanishing Point boosts Lane Detection [3.8170259685864165]
We propose a new multi-task fusion network architecture for high-precision lane detection.
The proposed fusion strategy was tested using the public CULane dataset.
The experimental results suggest that the lane detection accuracy of our method outperforms those of state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2020-07-30T17:17:00Z) - CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive
Point Blending [102.98909328368481]
CurveLane-NAS is a novel lane-sensitive architecture search framework.
It captures both long-ranged coherent and accurate short-range curve information.
It unifies both architecture search and post-processing on curve lane predictions via point blending.
arXiv Detail & Related papers (2020-07-23T17:23:26Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z) - SUPER: A Novel Lane Detection System [26.417172945374364]
We propose a real-time lane detection system, called Scene Understanding Physics-Enhanced Real-time (SUPER) algorithm.
We train the proposed system using heterogeneous data from Cityscapes, Vistas and Apollo, and evaluate the performance on four completely separate datasets.
Preliminary test results show promising real-time lane-detection performance compared with the Mobileye.
arXiv Detail & Related papers (2020-05-14T21:40:39Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image.
This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects.
arXiv Detail & Related papers (2020-03-28T18:51:43Z) - Semi-Local 3D Lane Detection and Uncertainty Estimation [6.296104145657063]
Our method is based on a semi-local, BEV, tile representation that breaks down lanes into simple lane segments.
It combines learning a parametric model for the segments along with a deep feature embedding that is then used to cluster segment together into full lanes.
Our method is the first to output a learning based uncertainty estimation for the lane detection task.
arXiv Detail & Related papers (2020-03-11T12:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.