Prompt-based Pre-trained Model for Personality and Interpersonal
Reactivity Prediction
- URL: http://arxiv.org/abs/2203.12481v1
- Date: Wed, 23 Mar 2022 15:22:34 GMT
- Title: Prompt-based Pre-trained Model for Personality and Interpersonal
Reactivity Prediction
- Authors: Bin Li, Yixuan Weng, Qiya Song, Fuyan Ma, Bin Sun, Shutao Li
- Abstract summary: This paper describes the LingJing team's method to the Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA) 2022 shared task on Personality Prediction (PER) and Reactivity Index Prediction (IRI)
- Score: 19.288384399961867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes the LingJing team's method to the Workshop on
Computational Approaches to Subjectivity, Sentiment & Social Media Analysis
(WASSA) 2022 shared task on Personality Prediction (PER) and Reactivity Index
Prediction (IRI). In this paper, we adopt the prompt-based method with the
pre-trained language model to accomplish these tasks. Specifically, the prompt
is designed to provide the extra knowledge for enhancing the pre-trained model.
Data augmentation and model ensemble are adopted for obtaining better results.
Extensive experiments are performed, which shows the effectiveness of the
proposed method. On the final submission, our system achieves a Pearson
Correlation Coefficient of 0.2301 and 0.2546 on Track 3 and Track 4
respectively. We ranked Top-1 on both sub-tasks.
Related papers
- Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Dual Test-time Training for Out-of-distribution Recommender System [91.15209066874694]
We propose a novel Dual Test-Time-Training framework for OOD Recommendation, termed DT3OR.
In DT3OR, we incorporate a model adaptation mechanism during the test-time phase to carefully update the recommendation model.
To the best of our knowledge, this paper is the first work to address OOD recommendation via a test-time-training strategy.
arXiv Detail & Related papers (2024-07-22T13:27:51Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - Modeling of learning curves with applications to pos tagging [0.27624021966289597]
We introduce an algorithm to estimate the evolution of learning curves on the whole of a training data base.
We approximate iteratively the sought value at the desired time, independently of the learning technique used.
The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition.
arXiv Detail & Related papers (2024-02-04T15:00:52Z) - A Supervised Contrastive Learning Pretrain-Finetune Approach for Time
Series [15.218841180577135]
We introduce a novel pretraining procedure that leverages supervised contrastive learning to distinguish features within each pretraining dataset.
We then propose a fine-tuning procedure designed to enhance the accurate prediction of the target data by aligning it more closely with the learned dynamics of the pretraining datasets.
arXiv Detail & Related papers (2023-11-21T02:06:52Z) - Hierarchical Decomposition of Prompt-Based Continual Learning:
Rethinking Obscured Sub-optimality [55.88910947643436]
Self-supervised pre-training is essential for handling vast quantities of unlabeled data in practice.
HiDe-Prompt is an innovative approach that explicitly optimize the hierarchical components with an ensemble of task-specific prompts and statistics.
Our experiments demonstrate the superior performance of HiDe-Prompt and its robustness to pre-training paradigms in continual learning.
arXiv Detail & Related papers (2023-10-11T06:51:46Z) - NOWJ1@ALQAC 2023: Enhancing Legal Task Performance with Classic
Statistical Models and Pre-trained Language Models [4.329463429688995]
This paper describes the NOWJ1 Team's approach for the Automated Legal Question Answering Competition (ALQAC) 2023.
For the document retrieval task, we implement a pre-processing step to overcome input limitations and apply learning-to-rank methods to consolidate features from various models.
We incorporate state-of-the-art models to develop distinct systems for each sub-task, utilizing both classic statistical models and pre-trained Language Models.
arXiv Detail & Related papers (2023-09-16T18:32:15Z) - Unifying Language Learning Paradigms [96.35981503087567]
We present a unified framework for pre-training models that are universally effective across datasets and setups.
We show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective.
Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on one-shot summarization.
arXiv Detail & Related papers (2022-05-10T19:32:20Z) - Incremental Learning for End-to-End Automatic Speech Recognition [41.297106772785206]
We propose an incremental learning method for end-to-end Automatic Speech Recognition (ASR)
We design a novel explainability-based knowledge distillation for ASR models, which is combined with a response-based knowledge distillation to maintain the original model's predictions and the "reason" for the predictions.
Results on a multi-stage sequential training task show that our method outperforms existing ones in mitigating forgetting.
arXiv Detail & Related papers (2020-05-11T08:18:08Z) - A Tailored Pre-Training Model for Task-Oriented Dialog Generation [60.05269529832447]
We propose a Pre-trained Role Alternating Language model (PRAL) for task-oriented conversational systems.
We introduce a task-oriented dialog pretraining dataset by cleaning 13 existing data sets.
The results show that PRAL performs better or on par with state-of-the-art methods.
arXiv Detail & Related papers (2020-04-24T09:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.