論文の概要: Improving the Fairness of Chest X-ray Classifiers
- arxiv url: http://arxiv.org/abs/2203.12609v1
- Date: Wed, 23 Mar 2022 17:56:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-24 14:35:31.366296
- Title: Improving the Fairness of Chest X-ray Classifiers
- Title(参考訳): 胸部X線分類器の公正性向上
- Authors: Haoran Zhang, Natalie Dullerud, Karsten Roth, Lauren Oakden-Rayner,
Stephen Robert Pfohl, Marzyeh Ghassemi
- Abstract要約: 本研究は, 予測性能の相違(グループフェアネス)をゼロにする努力が, 臨床現場で適切な公平性の定義であるかどうかを問うものである。
非クリニカルデータに関する先行研究と一致して、最悪のグループのパフォーマンス向上を目指す手法は、単純なデータバランシングを上回りません。
- 参考スコア(独自算出の注目度): 19.908277166053185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have reached or surpassed human-level performance in the
field of medical imaging, especially in disease diagnosis using chest x-rays.
However, prior work has found that such classifiers can exhibit biases in the
form of gaps in predictive performance across protected groups. In this paper,
we question whether striving to achieve zero disparities in predictive
performance (i.e. group fairness) is the appropriate fairness definition in the
clinical setting, over minimax fairness, which focuses on maximizing the
performance of the worst-case group. We benchmark the performance of nine
methods in improving classifier fairness across these two definitions. We find,
consistent with prior work on non-clinical data, that methods which strive to
achieve better worst-group performance do not outperform simple data balancing.
We also find that methods which achieve group fairness do so by worsening
performance for all groups. In light of these results, we discuss the utility
of fairness definitions in the clinical setting, advocating for an
investigation of the bias-inducing mechanisms in the underlying data generating
process whenever possible.
- Abstract(参考訳): 深層学習モデルは、医学画像の分野、特に胸部x線を用いた疾患診断において、人間レベルの性能に達している。
しかし、先行研究により、そのような分類器は保護されたグループ間での予測性能のギャップの形でバイアスを示すことが判明した。
本稿では, 予測性能(グループフェアネス)のゼロ格差を達成する努力が, 最悪の症例群のパフォーマンスを最大化することに焦点を当てたミニマックスフェアネスよりも, 臨床設定における適切なフェアネス定義であるかどうかを問う。
これら2つの定義間の分類器の公平性を改善するために,9つの手法の性能をベンチマークした。
非クリニカルデータに関する先行研究と一致して、最悪のグループのパフォーマンス向上を目指す手法は、単純なデータバランシングを上回りません。
また、グループフェアネスを達成する方法は、すべてのグループのパフォーマンスを悪化させることで達成できる。
これらの結果を踏まえ,臨床現場における公平性定義の有用性について考察し,基礎となるデータ生成プロセスにおけるバイアス誘発機構の解明を可能な限り進める。
関連論文リスト
- Fair Distillation: Teaching Fairness from Biased Teachers in Medical Imaging [16.599189934420885]
本研究では,Fair Distillation (FairDi) 法を提案する。
また,FairDiの精度は,既存手法に比べて向上し,グループ別精度も向上した。
FairDiは分類やセグメンテーションなどの様々な医療タスクに適応し、公平なモデルパフォーマンスのための効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-18T16:50:34Z) - Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities [4.351859373879489]
ディープラーニングモデルにおける継承バイアスは、保護されたグループ間での予測精度の相違につながる可能性がある。
本稿では,正確な診断結果を達成し,交差点群間の公平性を確保するための枠組みを提案する。
論文 参考訳(メタデータ) (2024-03-27T02:13:20Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
バッチ正規化をセンシティブ属性に適応させるFairAdaBNを提案する。
本研究では,FATE(Fairness-Accuracy Trade-off efficiency)と呼ばれる新しい指標を提案する。
2つの皮膚科学データセットを用いた実験により,提案手法はフェアネス基準とFATEの他の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T02:22:07Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Outlier-Robust Group Inference via Gradient Space Clustering [50.87474101594732]
既存のメソッドは、最悪のグループのパフォーマンスを改善することができるが、それらは、しばしば高価で入手できないグループアノテーションを必要とする。
モデルパラメータの勾配の空間にデータをクラスタリングすることで,アウトレーヤの存在下でグループアノテーションを学習する問題に対処する。
そこで我々は,DBSCANのような標準クラスタリング手法に適合するように,マイノリティグループや外れ値に関する情報を保存しながら,勾配空間内のデータがより単純な構造を持つことを示す。
論文 参考訳(メタデータ) (2022-10-13T06:04:43Z) - FairPrune: Achieving Fairness Through Pruning for Dermatological Disease
Diagnosis [17.508632873527525]
刈り取りによる公平性を実現する方法であるFairPruneを提案する。
本研究では,両グループの平均精度を極力高く保ちながら,公平性を著しく向上できることを示す。
論文 参考訳(メタデータ) (2022-03-04T02:57:34Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
グループフェアネス(グループフェアネス、英: Group Fairness)とは、個人の異なる集団が保護された属性によってどのように異なる扱いを受けるかを測定するフェアネスの概念のクラスである。
グループフェアネスにおけるこれらのトレードオフを体系的に評価できる一般的な診断法を提案する。
論文 参考訳(メタデータ) (2020-04-07T14:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。