論文の概要: FACT: A Diagnostic for Group Fairness Trade-offs
- arxiv url: http://arxiv.org/abs/2004.03424v3
- Date: Tue, 7 Jul 2020 17:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 23:21:12.699852
- Title: FACT: A Diagnostic for Group Fairness Trade-offs
- Title(参考訳): FACT:グループフェアネストレードオフの診断
- Authors: Joon Sik Kim, Jiahao Chen, Ameet Talwalkar
- Abstract要約: グループフェアネス(グループフェアネス、英: Group Fairness)とは、個人の異なる集団が保護された属性によってどのように異なる扱いを受けるかを測定するフェアネスの概念のクラスである。
グループフェアネスにおけるこれらのトレードオフを体系的に評価できる一般的な診断法を提案する。
- 参考スコア(独自算出の注目度): 23.358566041117083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group fairness, a class of fairness notions that measure how different groups
of individuals are treated differently according to their protected attributes,
has been shown to conflict with one another, often with a necessary cost in
loss of model's predictive performance. We propose a general diagnostic that
enables systematic characterization of these trade-offs in group fairness. We
observe that the majority of group fairness notions can be expressed via the
fairness-confusion tensor, which is the confusion matrix split according to the
protected attribute values. We frame several optimization problems that
directly optimize both accuracy and fairness objectives over the elements of
this tensor, which yield a general perspective for understanding multiple
trade-offs including group fairness incompatibilities. It also suggests an
alternate post-processing method for designing fair classifiers. On synthetic
and real datasets, we demonstrate the use cases of our diagnostic, particularly
on understanding the trade-off landscape between accuracy and fairness.
- Abstract(参考訳): 集団フェアネス(group fairness)は、異なる個人集団が保護された属性によってどのように異なる扱いを受けるかを測定するフェアネス概念のクラスであり、しばしばモデルの予測性能を失うために必要なコストと相反することが示されている。
グループフェアネスにおけるこれらのトレードオフを体系的に評価できる一般的な診断法を提案する。
群フェアネスの概念の大多数は、保護属性値に従って分割された混乱行列であるフェアネス・コンフュージョンテンソルによって表現できる。
このテンソルの要素に対して精度と公平性の両方を直接最適化する最適化問題をいくつか検討し、グループフェアネスの不整合を含む複数のトレードオフを理解するための一般的な視点を得た。
また、公正な分類器を設計するための別の後処理法を提案する。
合成データと実データについて,特に正確性と公平性のトレードオフの理解において,我々の診断のユースケースを実証する。
関連論文リスト
- Fair Without Leveling Down: A New Intersectional Fairness Definition [1.0958014189747356]
本稿では,感性グループ間での絶対値と相対値のパフォーマンスを組み合わせた$alpha$-Intersectional Fairnessという新たな定義を提案する。
我々は、新しいフェアネス定義を用いて、複数の一般的なプロセス内機械学習アプローチをベンチマークし、単純なベースラインよりも改善が得られないことを示します。
論文 参考訳(メタデータ) (2023-05-21T16:15:12Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
バッチ正規化をセンシティブ属性に適応させるFairAdaBNを提案する。
本研究では,FATE(Fairness-Accuracy Trade-off efficiency)と呼ばれる新しい指標を提案する。
2つの皮膚科学データセットを用いた実験により,提案手法はフェアネス基準とFATEの他の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T02:22:07Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
多変量時系列予測モデル(MTS)では変数間の性能不公平性が広く存在する。
フェアネスを意識したMTS予測のための新しいフレームワークであるFairForを提案する。
論文 参考訳(メタデータ) (2023-01-27T04:54:12Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Repairing Regressors for Fair Binary Classification at Any Decision
Threshold [8.322348511450366]
同時にすべてのしきい値で公正なパフォーマンスを向上できることを示します。
本研究では,異なる保護群に対する分類の分布の類似度を捉える分布パリティの形式的尺度を導入する。
我々の主な成果は、最適輸送に基づく新しい後処理アルゴリズムを提案し、分散パリティを確実に最大化することである。
論文 参考訳(メタデータ) (2022-03-14T20:53:35Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Fair Mixup: Fairness via Interpolation [28.508444261249423]
公平性制約を課すための新しいデータ拡張戦略であるfair mixupを提案する。
対象群間の補間標本の経路のモデルに正則化することで公平性が達成できることを示す。
ベンチマークにおける精度と公正度の測定の両面において,より優れた一般化を実現することを実証的に示す。
論文 参考訳(メタデータ) (2021-03-11T06:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。