論文の概要: Incorporating Rather Than Eliminating: Achieving Fairness for Skin Disease Diagnosis Through Group-Specific Expert
- arxiv url: http://arxiv.org/abs/2506.17787v1
- Date: Sat, 21 Jun 2025 18:42:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.58466
- Title: Incorporating Rather Than Eliminating: Achieving Fairness for Skin Disease Diagnosis Through Group-Specific Expert
- Title(参考訳): 排除するよりむしろ組み込む:集団専門医による皮膚疾患診断の公正性の獲得
- Authors: Gelei Xu, Yuying Duan, Zheyuan Liu, Xueyang Li, Meng Jiang, Michael Lemmon, Wei Jin, Yiyu Shi,
- Abstract要約: 本稿では,FairMoEについて紹介する。FairMoEは,実験モジュールを階層的に混合し,グループ固有の学習者として機能するフレームワークである。
グループラベルに基づいてデータを厳格に割り当てる従来の方法とは異なり、FairMoEはデータを最も適した専門家に動的にルーティングする。
- 参考スコア(独自算出の注目度): 18.169924728540487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-based systems have achieved high accuracy in skin disease diagnostics but often exhibit biases across demographic groups, leading to inequitable healthcare outcomes and diminished patient trust. Most existing bias mitigation methods attempt to eliminate the correlation between sensitive attributes and diagnostic prediction, but those methods often degrade performance due to the lost of clinically relevant diagnostic cues. In this work, we propose an alternative approach that incorporates sensitive attributes to achieve fairness. We introduce FairMoE, a framework that employs layer-wise mixture-of-experts modules to serve as group-specific learners. Unlike traditional methods that rigidly assign data based on group labels, FairMoE dynamically routes data to the most suitable expert, making it particularly effective for handling cases near group boundaries. Experimental results show that, unlike previous fairness approaches that reduce performance, FairMoE achieves substantial accuracy improvements while preserving comparable fairness metrics.
- Abstract(参考訳): AIベースのシステムは、皮膚疾患の診断において高い精度を達成したが、人口統計学的グループに偏りがしばしば見られ、不平等な医療結果と患者の信頼が低下する。
既存のバイアス緩和法の多くは、感度特性と診断予測の相関を排除しようとするが、臨床関連診断方法の欠如により、しばしば性能が低下する。
本研究では, 公平性を実現するために, 感度特性を取り入れた代替手法を提案する。
本稿では,FairMoEについて紹介する。FairMoEは,実験モジュールを階層的に混合し,グループ固有の学習者として機能するフレームワークである。
グループラベルに基づいてデータを厳格に割り当てる従来の方法とは異なり、FairMoEはデータを最も適した専門家に動的にルーティングする。
実験結果から、FairMoEは、性能を低下させる従来のフェアネスアプローチとは異なり、同等のフェアネス指標を保ちながら、かなりの精度の向上を実現していることがわかった。
関連論文リスト
- FairREAD: Re-fusing Demographic Attributes after Disentanglement for Fair Medical Image Classification [3.615240611746158]
FairREAD (Fair Refusion After Disentanglement) は, センシティブな階層属性を公正な画像表現に再統合することで不公平を緩和するフレームワークである。
FairREADは、臨床に関係のある詳細を保存するために、制御された再灌流機構を使用しながら、人口統計情報をアンタングルする敵の訓練を採用している。
大規模臨床X線データセットの総合的評価は、FairREADが診断精度を維持しながら不公平度指標を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-12-20T22:17:57Z) - Looking Beyond What You See: An Empirical Analysis on Subgroup Intersectional Fairness for Multi-label Chest X-ray Classification Using Social Determinants of Racial Health Inequities [4.351859373879489]
ディープラーニングモデルにおける継承バイアスは、保護されたグループ間での予測精度の相違につながる可能性がある。
本稿では,正確な診断結果を達成し,交差点群間の公平性を確保するための枠組みを提案する。
論文 参考訳(メタデータ) (2024-03-27T02:13:20Z) - Achieving Reliable and Fair Skin Lesion Diagnosis via Unsupervised Domain Adaptation [43.1078084014722]
教師なしドメイン適応(UDA)は、信頼性の高い分類器を開発するために、大きな外部データセットを統合することができる。
UDAは少数派に対する偏見を効果的に軽減し、診断システムの公平性を高めることができる。
論文 参考訳(メタデータ) (2023-07-06T17:32:38Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
データから現実的な拡張を自動的に学習することは、生成モデルを用いてラベル効率の良い方法で可能であることを示す。
これらの学習の強化は、モデルをより堅牢で統計的に公平に配布できることを示した。
論文 参考訳(メタデータ) (2023-04-18T18:15:38Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
バッチ正規化をセンシティブ属性に適応させるFairAdaBNを提案する。
本研究では,FATE(Fairness-Accuracy Trade-off efficiency)と呼ばれる新しい指標を提案する。
2つの皮膚科学データセットを用いた実験により,提案手法はフェアネス基準とFATEの他の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T02:22:07Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。