Nonreciprocal waveguide-QED for spinning cavities with multiple coupling
points
- URL: http://arxiv.org/abs/2203.12936v1
- Date: Thu, 24 Mar 2022 08:49:03 GMT
- Title: Nonreciprocal waveguide-QED for spinning cavities with multiple coupling
points
- Authors: Wenxiao Liu, Yafen Lin, Jiaqi Li, and Xin Wang
- Abstract summary: Nonreciprocal photon transmissions occur in the cavities-waveguide system.
Our proposal provides a novel way to achieve quantum nonreciprocal devices.
- Score: 6.218498009194956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate chiral emission and the single-photon scattering of spinning
cavities coupled to a meandering waveguide at multiple coupling points. It is
shown that nonreciprocal photon transmissions occur in the cavities-waveguide
system, which stems from interference effects among different coupling points,
and frequency shifts induced by the Sagnac effect. The nonlocal interference is
akin to the mechanism in giant atoms. In the single-cavity setup, by optimizing
the spinning velocity and number of coupling points, the chiral factor can
approach 1, and the chiral direction can be freely switched. Moreover,
destructive interference gives rise to the complete photon transmission in one
direction over the whole optical frequency band, with no analogy in other
quantum setups. In the multiple-cavity system, we also investigate the photon
transport properties. The results indicate a directional information flow
between different nodes. Our proposal provides a novel way to achieve quantum
nonreciprocal devices, which can be applied in large-scale quantum chiral
networks with optical waveguides.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Nonlinear chiral quantum optics with giant-emitter pairs [9.045697677452061]
We propose a setup which combines giant emitters (coupling to light at multiple points separated by wavelength distances) with nonlinear quantum optics and its correlated photons.
We show that the proposed setup can provide directional quantum many-body resources, and can be configured as a building block for a chiral quantum network with correlated flying qubits''
Our findings point toward a rich landscape of tailoring multiphoton propagation and correlation properties by exploiting interference effects of giant emitters coupling to nonlinear photonic baths.
arXiv Detail & Related papers (2024-04-15T14:26:25Z) - Band Gap Engineering and Controlling Transport Properties of Single
Photons in Periodic and Disordered Jaynes-Cummings Arrays [0.0]
We study the single photon transport properties in periodic and position-disordered Jaynes-Cummings arrays.
In the disordered case, we find that the single photon transmission curves show the disappearance of band formation.
The results of this work may find application in the study of quantum many-body effects in the optical domain.
arXiv Detail & Related papers (2024-01-26T22:32:21Z) - Single-photon scattering in giant-atom waveguide systems with chiral coupling [5.482382662576134]
We study single-photon scattering spectra of a giant atom chirally coupled to a one-dimensional waveguide at multiple connection points.
We show that the transmission spectrum of an incident photon can undergo a transition from complete transmission to total reflection at multiple frequency.
The giant-atom-waveguide system with chiral coupling is a promising candidate for realizing single-photon routers with multiple channels.
arXiv Detail & Related papers (2024-01-03T07:54:27Z) - Chiral and nonreciprocal single-photon scattering in a
chiral-giant-molecule waveguide-QED system [0.3621816213357969]
We study chiral and nonreciprocal single-photon scattering in a chiral-giant-molecule waveguide-QED system.
In the non-Markovian regime, the scattering spectra are characterized by more abundant structures with multiple peaks and dips.
Our results have potential applications in the design of optical quantum devices involving giant atoms.
arXiv Detail & Related papers (2023-06-19T14:19:46Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Collective photon routing improvement in a dissipative quantum emitter
chain strongly coupled to a chiral waveguide QED ladder [0.0]
We show that the collective effects arising from the strong DDI protect the routing scheme from spontaneous emission loss.
We demonstrate that the router operation can be improved from $58%$ to $95%$ in a typical dissipative chiral light-matter interface.
arXiv Detail & Related papers (2020-06-20T07:07:17Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.