論文の概要: Extended critical regimes of deep neural networks
- arxiv url: http://arxiv.org/abs/2203.12967v1
- Date: Thu, 24 Mar 2022 10:15:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-25 19:51:39.340079
- Title: Extended critical regimes of deep neural networks
- Title(参考訳): 深層ニューラルネットワークの臨界領域の拡張
- Authors: Cheng Kevin Qu and Asem Wardak and Pulin Gong
- Abstract要約: 重み付き重みは、微調整パラメータを使わずに、拡張臨界状態の出現を可能にすることを示す。
この拡張クリティカルレジームでは、DNNは層間のリッチで複雑な伝播ダイナミクスを示す。
効率的なニューラルアーキテクチャの設計のための理論的ガイドを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) have been successfully applied to many real-world
problems, but a complete understanding of their dynamical and computational
principles is still lacking. Conventional theoretical frameworks for analysing
DNNs often assume random networks with coupling weights obeying Gaussian
statistics. However, non-Gaussian, heavy-tailed coupling is a ubiquitous
phenomenon in DNNs. Here, by weaving together theories of heavy-tailed random
matrices and non-equilibrium statistical physics, we develop a new type of mean
field theory for DNNs which predicts that heavy-tailed weights enable the
emergence of an extended critical regime without fine-tuning parameters. In
this extended critical regime, DNNs exhibit rich and complex propagation
dynamics across layers. We further elucidate that the extended criticality
endows DNNs with profound computational advantages: balancing the contraction
as well as expansion of internal neural representations and speeding up
training processes, hence providing a theoretical guide for the design of
efficient neural architectures.
- Abstract(参考訳): 深層ニューラルネットワーク(dnn)は多くの現実世界の問題にうまく適用されているが、その力学と計算原理の完全な理解はまだ欠けている。
DNNを解析するための従来の理論的枠組みは、しばしばガウス統計に従う結合重みを持つランダムネットワークを仮定する。
しかし、非ガウス的、重尾結合はDNNにおいてユビキタスな現象である。
ここでは、重み付き乱数行列と非平衡統計物理学の理論を織り合わせることで、重み付き重みが微調整パラメータを伴わずに拡張臨界状態の出現を予測できる新しいタイプのDNN平均場理論を開発する。
この拡張クリティカルレジームでは、DNNは層間のリッチで複雑な伝播ダイナミクスを示す。
さらに、拡張臨界性は、DNNに深い計算上の優位性をもたらすこと、すなわち、収縮のバランスと内部の神経表現の拡張、トレーニングプロセスの高速化、そして、効率的な神経アーキテクチャの設計のための理論的ガイドを提供する。
関連論文リスト
- Continuous Spiking Graph Neural Networks [43.28609498855841]
連続グラフニューラルネットワーク(CGNN)は、既存の離散グラフニューラルネットワーク(GNN)を一般化する能力によって注目されている。
本稿では,2階ODEを用いたCOS-GNNの高次構造について紹介する。
我々は、COS-GNNが爆発や消滅の問題を効果的に軽減し、ノード間の長距離依存関係を捕捉できるという理論的証明を提供する。
論文 参考訳(メタデータ) (2024-04-02T12:36:40Z) - On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective [9.753461673117362]
ニューラル・タンジェント・カーネル(NTK)は、大規模ニューラルネットワークの振る舞いを記述する理論的枠組みとして注目されている。
カーネル体制への収束率の定量化の現在の結果は、これらの利点を利用するには、それらよりも桁違いに広いアーキテクチャが必要であることを示唆している。
本研究は,大規模建築物の実用的関連挙動を予測するための限界条件について検討する。
論文 参考訳(メタデータ) (2023-09-29T20:51:24Z) - Learning Ability of Interpolating Deep Convolutional Neural Networks [28.437011792990347]
我々は,深層ニューラルネットワーク,深層畳み込みニューラルネットワーク(DCNN)の重要なファミリーの学習能力について検討する。
非補間DCNNに適切に定義された層を追加することで、非補間DCNNの良好な学習率を維持する補間DCNNが得られることを示す。
我々の研究は、過度に適合したDCNNの一般化の理論的検証を提供する。
論文 参考訳(メタデータ) (2022-10-25T17:22:31Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
スパイキングニューラルネットワーク(SNN)は、生物学的可視性や教師なし学習能力など、脳にインスパイアされた機械学習アルゴリズムである。
本稿では,リニアリーキー・インテグレート・アンド・ファイア・モデル(LIF/SNN)の生物学的パラメータとReLU-AN/Deep Neural Networks(DNN)のパラメータとの正確な数学的マッピングを確立する。
論文 参考訳(メタデータ) (2022-05-31T17:02:26Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - A self consistent theory of Gaussian Processes captures feature learning
effects in finite CNNs [2.28438857884398]
無限幅/チャネル制限のディープニューラルネットワーク(DNN)が最近注目を集めている。
理論上の魅力にもかかわらず、この視点は有限DNNにおいて深層学習の重要な要素を欠いている。
ここでは,大きなトレーニングセット上で雑音勾配勾配で訓練されたDNNを考察し,強い有限DNNと特徴学習効果を考慮した自己一貫したガウス過程理論を導出する。
論文 参考訳(メタデータ) (2021-06-08T05:20:00Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
本稿では,ディープラーニングの最適化を一般化誤差と関連づけて解析する理論フレームワークを提案する。
ニューラルネットワーク最適化分析のための平均場理論やニューラル・タンジェント・カーネル理論のような既存のフレームワークは、そのグローバル収束を示すために、ネットワークの無限幅の限界を取る必要がある。
論文 参考訳(メタデータ) (2020-07-11T18:19:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。