SERA: Safe and Efficient Reactive Obstacle Avoidance for Collaborative
Robotic Planning in Unstructured Environments
- URL: http://arxiv.org/abs/2203.13821v2
- Date: Tue, 28 Mar 2023 03:43:43 GMT
- Title: SERA: Safe and Efficient Reactive Obstacle Avoidance for Collaborative
Robotic Planning in Unstructured Environments
- Authors: Apan Dastider and Mingjie Lin
- Abstract summary: We propose a novel methodology for reactive whole-body obstacle avoidance.
Our approach allows a robotic arm to proactively avoid obstacles of arbitrary 3D shapes without direct contact.
Our methodology provides a robust and effective solution for safe human-robot collaboration in non-stationary environments.
- Score: 1.5229257192293197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe and efficient collaboration among multiple robots in unstructured
environments is increasingly critical in the era of Industry 4.0. However,
achieving robust and autonomous collaboration among humans and other robots
requires modern robotic systems to have effective proximity perception and
reactive obstacle avoidance. In this paper, we propose a novel methodology for
reactive whole-body obstacle avoidance that ensures conflict-free robot-robot
interactions even in dynamic environment. Unlike existing approaches based on
Jacobian-type, sampling based or geometric techniques, our methodology
leverages the latest deep learning advances and topological manifold learning,
enabling it to be readily generalized to other problem settings with high
computing efficiency and fast graph traversal techniques. Our approach allows a
robotic arm to proactively avoid obstacles of arbitrary 3D shapes without
direct contact, a significant improvement over traditional industrial cobot
settings. To validate our approach, we implement it on a robotic platform
consisting of dual 6-DoF robotic arms with optimized proximity sensor
placement, capable of working collaboratively with varying levels of
interference. Specifically, one arm performs reactive whole-body obstacle
avoidance while achieving its pre-determined objective, while the other arm
emulates the presence of a human collaborator with independent and potentially
adversarial movements. Our methodology provides a robust and effective solution
for safe human-robot collaboration in non-stationary environments.
Related papers
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning [0.0]
We present a novel methodology that enhances the robot's interaction with different types of agents and obstacles.
This approach uses information about the entity types, improving collision avoidance and ensuring safer navigation.
We introduce a new reward function that penalizes the robot for collisions with different entities such as adults, bicyclists, children, and static obstacles.
arXiv Detail & Related papers (2024-08-26T11:16:03Z) - Improving safety in physical human-robot collaboration via deep metric
learning [36.28667896565093]
Direct physical interaction with robots is becoming increasingly important in flexible production scenarios.
In order to keep the risk potential low, relatively simple measures are prescribed for operation, such as stopping the robot if there is physical contact or if a safety distance is violated.
This work uses the Deep Metric Learning (DML) approach to distinguish between non-contact robot movement, intentional contact aimed at physical human-robot interaction, and collision situations.
arXiv Detail & Related papers (2023-02-23T11:26:51Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
We propose a novel, deep neural network-based method called CoGrasp that generates human-aware robot grasps.
In real robot experiments, our method achieves about 88% success rate in producing stable grasps.
Our approach enables a safe, natural, and socially-aware human-robot objects' co-grasping experience.
arXiv Detail & Related papers (2022-10-06T19:23:25Z) - Safe reinforcement learning of dynamic high-dimensional robotic tasks:
navigation, manipulation, interaction [31.553783147007177]
In reinforcement learning, safety is even more fundamental for exploring an environment without causing any damage.
This paper introduces a new formulation of safe exploration for reinforcement learning of various robotic tasks.
Our approach applies to a wide class of robotic platforms and enforces safety even under complex collision constraints learned from data.
arXiv Detail & Related papers (2022-09-27T11:23:49Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Regularized Deep Signed Distance Fields for Reactive Motion Generation [30.792481441975585]
Distance-based constraints are fundamental for enabling robots to plan their actions and act safely.
We propose Regularized Deep Signed Distance Fields (ReDSDF), a single neural implicit function that can compute smooth distance fields at any scale.
We demonstrate the effectiveness of our approach in representative simulated tasks for whole-body control (WBC) and safe Human-Robot Interaction (HRI) in shared workspaces.
arXiv Detail & Related papers (2022-03-09T14:21:32Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.