論文の概要: Multi-model Ensemble Learning Method for Human Expression Recognition
- arxiv url: http://arxiv.org/abs/2203.14466v1
- Date: Mon, 28 Mar 2022 03:15:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 07:53:47.030750
- Title: Multi-model Ensemble Learning Method for Human Expression Recognition
- Title(参考訳): 表現認識のための多モデルアンサンブル学習法
- Authors: Jun Yu and Zhongpeng Cai and Peng He and Guocheng Xie and Qiang Ling
- Abstract要約: 本研究では,大量の実生活データを収集するアンサンブル学習法に基づく手法を提案する。
ABAW2022 ChallengeのAffWild2データセット上で多くの実験を行い、本ソリューションの有効性を実証した。
- 参考スコア(独自算出の注目度): 31.76775306959038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analysis of human affect plays a vital role in human-computer interaction
(HCI) systems. Due to the difficulty in capturing large amounts of real-life
data, most of the current methods have mainly focused on controlled
environments, which limit their application scenarios. To tackle this problem,
we propose our solution based on the ensemble learning method. Specifically, we
formulate the problem as a classification task, and then train several
expression classification models with different types of backbones--ResNet,
EfficientNet and InceptionNet. After that, the outputs of several models are
fused via model ensemble method to predict the final results. Moreover, we
introduce the multi-fold ensemble method to train and ensemble several models
with the same architecture but different data distributions to enhance the
performance of our solution. We conduct many experiments on the AffWild2
dataset of the ABAW2022 Challenge, and the results demonstrate the
effectiveness of our solution.
- Abstract(参考訳): 人間の影響の分析は、人-コンピュータ相互作用(HCI)システムにおいて重要な役割を果たす。
大量の実データを取り込むのが難しいため、現在の手法の多くは、アプリケーションシナリオを制限するコントロールされた環境に重点を置いている。
この問題に対処するために,アンサンブル学習法に基づく提案手法を提案する。
具体的には、問題を分類タスクとして定式化し、さまざまなバックボーン(resnet, efficientnet, inceptionnet)の表現分類モデルをトレーニングする。
その後、モデルアンサンブル法により複数のモデルの出力を融合して最終結果を予測する。
さらに,マルチフォールドアンサンブル法を導入し,同じアーキテクチャで異なるデータ分布を持つ複数のモデルを学習・アンサンブルし,ソリューションの性能を向上させる。
ABAW2022 ChallengeのAffWild2データセット上で多くの実験を行い、本ソリューションの有効性を実証した。
関連論文リスト
- Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
一般的な事前訓練された大規模モデルから微調整されたマージングモデルは、様々なタスクに特化しているが、様々なタスクでうまく機能するマルチタスクモデルを構築するための安価でスケーラブルな戦略として実証されている。
本稿では、共通低次元部分空間を同定し、その共有情報トラック干渉問題を性能を犠牲にすることなく利用するための連続緩和(Concrete)部分空間学習法を提案する。
論文 参考訳(メタデータ) (2023-12-11T07:24:54Z) - A Competitive Learning Approach for Specialized Models: A Solution for
Complex Physical Systems with Distinct Functional Regimes [0.0]
本稿では,物理システムのデータ駆動モデルを得るための新たな競合学習手法を提案する。
提案手法の背景にある基本的な考え方は、データに基づいて同時にトレーニングされたモデルの集合に対して、動的損失関数を使用することである。
論文 参考訳(メタデータ) (2023-07-19T23:29:40Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
様々な情報源からの要約統計を利用した柔軟なマルチタスク学習フレームワークを提案する。
また,Lepskiの手法の変種に基づく適応パラメータ選択手法を提案する。
この研究は、さまざまな領域にわたる関連するモデルをトレーニングするための、より柔軟なツールを提供する。
論文 参考訳(メタデータ) (2023-07-05T15:55:23Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Information Maximizing Curriculum: A Curriculum-Based Approach for
Imitating Diverse Skills [14.685043874797742]
本稿では,各データポイントに重みを割り当て,表現可能なデータに特化するようにモデルに促すカリキュラムベースのアプローチを提案する。
すべてのモードをカバーし、多様な振る舞いを可能にするため、我々は、各ミックスコンポーネントが学習のためのトレーニングデータの独自のサブセットを選択する、専門家(MoE)ポリシーの混合にアプローチを拡張します。
データセットの完全なカバレッジを実現するために,新たな最大エントロピーに基づく目標を提案する。
論文 参考訳(メタデータ) (2023-03-27T16:02:50Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Modular Networks Prevent Catastrophic Interference in Model-Based
Multi-Task Reinforcement Learning [0.8883733362171032]
モデルベースのマルチタスク強化学習が、共有ポリシネットワークからモデルフリーメソッドが行うのと同様の方法で、共有ダイナミクスモデルから恩恵を受けるかどうかを検討する。
単一ダイナミクスモデルを用いて、タスクの混乱と性能低下の明確な証拠を見出す。
対策として、学習力学モデルの内部構造を個別のサブネットワークにトレーニングすることで、パフォーマンスを著しく向上させる。
論文 参考訳(メタデータ) (2021-11-15T12:31:31Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
本稿では,学習に基づく手法とモデルに基づく手法の両方を活用する,エンドツーエンドのトレーニング可能なアンフォールディングネットワークを提案する。
提案するネットワークは, モデルベース手法の柔軟性を継承し, 一つのモデルを用いて, 異なるスケール要因に対する, 曖昧でノイズの多い画像の超解像化を行う。
論文 参考訳(メタデータ) (2020-03-23T17:55:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。