論文の概要: A Competitive Learning Approach for Specialized Models: A Solution for
Complex Physical Systems with Distinct Functional Regimes
- arxiv url: http://arxiv.org/abs/2307.10496v2
- Date: Fri, 21 Jul 2023 17:34:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-24 14:59:21.669225
- Title: A Competitive Learning Approach for Specialized Models: A Solution for
Complex Physical Systems with Distinct Functional Regimes
- Title(参考訳): 特殊モデルに対する競争学習アプローチ--異なる機能的レジームをもつ複雑な物理システムに対する解法
- Authors: Okezzi F. Ukorigho and Opeoluwa Owoyele
- Abstract要約: 本稿では,物理システムのデータ駆動モデルを得るための新たな競合学習手法を提案する。
提案手法の背景にある基本的な考え方は、データに基づいて同時にトレーニングされたモデルの集合に対して、動的損失関数を使用することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex systems in science and engineering sometimes exhibit behavior that
changes across different regimes. Traditional global models struggle to capture
the full range of this complex behavior, limiting their ability to accurately
represent the system. In response to this challenge, we propose a novel
competitive learning approach for obtaining data-driven models of physical
systems. The primary idea behind the proposed approach is to employ dynamic
loss functions for a set of models that are trained concurrently on the data.
Each model competes for each observation during training, allowing for the
identification of distinct functional regimes within the dataset. To
demonstrate the effectiveness of the learning approach, we coupled it with
various regression methods that employ gradient-based optimizers for training.
The proposed approach was tested on various problems involving model discovery
and function approximation, demonstrating its ability to successfully identify
functional regimes, discover true governing equations, and reduce test errors.
- Abstract(参考訳): 科学と工学の複雑なシステムは、しばしば異なる体制にまたがって変化する振る舞いを示す。
従来のグローバルモデルは、この複雑な振る舞いの完全な範囲を捉えるのに苦労し、システムを正確に表現する能力を制限する。
そこで本研究では,物理システムのデータ駆動モデルを得るための新しい競争学習手法を提案する。
提案手法の背後にある主要なアイデアは、データ上で同時にトレーニングされる一連のモデルに対して動的損失関数を採用することである。
各モデルは、トレーニング中の各観察を競い合い、データセット内で異なる機能的レジームを識別できるようにする。
学習手法の有効性を示すために,グラデーションに基づく学習最適化を用いた様々な回帰手法と組み合わせた。
提案手法は, モデル探索と関数近似を含む様々な問題に対して検証され, 機能的状態の同定, 真の支配方程式の発見, テスト誤差の低減を実現した。
関連論文リスト
- A Mathematical Model of the Hidden Feedback Loop Effect in Machine Learning Systems [44.99833362998488]
意図しない隠れフィードバックループに起因するいくつかの現象を共同で記述するために,繰り返し学習プロセスを導入する。
このような繰り返し学習設定の特徴は、環境の状態が時間とともに学習者自身に因果的に依存することである。
本稿では,繰り返し学習過程の力学系モデルを提案し,正および負のフィードバックループモードに対する確率分布の制限セットを証明した。
論文 参考訳(メタデータ) (2024-05-04T17:57:24Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Self-Supervised Reinforcement Learning that Transfers using Random
Features [41.00256493388967]
本研究では,タスク間の行動の伝達を,報酬の異なる自己指導型強化学習手法を提案する。
我々の手法は、報奨ラベルなしでオフラインデータセットでトレーニングできるが、新しいタスクに素早くデプロイできるという自己教師型である。
論文 参考訳(メタデータ) (2023-05-26T20:37:06Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
本稿では,ニューラルネットワークに基づく記号回帰手法を提案する。
非常に小さなトレーニングデータセットとシステムに関する事前知識に基づいて、物理的に妥当なモデルを構築する。
本研究では,TurtleBot 2移動ロボット,磁気操作システム,2つの抵抗の等価抵抗,アンチロックブレーキシステムの長手力の4つの試験システムに対するアプローチを実験的に評価した。
論文 参考訳(メタデータ) (2023-02-01T22:05:04Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
アダプティブと呼ばれるいくつかのODEソルバは、目の前の問題の複雑さに応じて評価戦略を適用することができる。
本稿では,動的システムモデリングのためのブラックボックスとして適応型ソルバをシームレスに利用できない理由を示すための簡単な実験について述べる。
論文 参考訳(メタデータ) (2022-11-13T17:48:04Z) - Multi-model Ensemble Learning Method for Human Expression Recognition [31.76775306959038]
本研究では,大量の実生活データを収集するアンサンブル学習法に基づく手法を提案する。
ABAW2022 ChallengeのAffWild2データセット上で多くの実験を行い、本ソリューションの有効性を実証した。
論文 参考訳(メタデータ) (2022-03-28T03:15:06Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。