Reference-State Error Mitigation: A Strategy for High Accuracy Quantum
Computation of Chemistry
- URL: http://arxiv.org/abs/2203.14756v1
- Date: Mon, 28 Mar 2022 13:46:50 GMT
- Title: Reference-State Error Mitigation: A Strategy for High Accuracy Quantum
Computation of Chemistry
- Authors: Phalgun Lolur, M{\aa}rten Skogh, Christopher Warren, Janka
Bizn\'arov\'a, Amr Osman, Giovanna Tancredi, G\"oran Wendin, Jonas Bylander
and Martin Rahm
- Abstract summary: This work introduces a strategy for reference-state error mitigation (REM) of quantum chemistry.
REM can be applied alongside existing mitigation procedures, while requiring minimal post-processing.
The approach is agnostic to the underlying quantum mechanical ansatz and is designed for the variational quantum eigensolver (VQE)
- Score: 0.6501025489527174
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Decoherence and gate errors severely limit the capabilities of
state-of-the-art quantum computers. This work introduces a strategy for
reference-state error mitigation (REM) of quantum chemistry that can be
straightforwardly implemented on current and near-term devices. REM can be
applied alongside existing mitigation procedures, while requiring minimal
post-processing and only one or no additional measurements. The approach is
agnostic to the underlying quantum mechanical ansatz and is designed for the
variational quantum eigensolver (VQE). Two orders-of-magnitude improvement in
the computational accuracy of ground state energies of small molecules (H2,
HeH+ and LiH) is demonstrated on superconducting quantum hardware. Simulations
of noisy circuits with a depth exceeding 1000 two-qubit gates are used to argue
for scalability of the method.
Related papers
- A circuit-generated quantum subspace algorithm for the variational quantum eigensolver [0.0]
We propose combining quantum subspace techniques with the variational quantum eigensolver (VQE)
In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits.
The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies.
arXiv Detail & Related papers (2024-04-09T18:00:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Resource-Efficient Quantum Circuits for Molecular Simulations: A Case
Study of Umbrella Inversion in Ammonia [1.439738350540859]
We develop a novel quantum circuit that reduces the required circuit depth and number of two-qubit entangling gates by about 60%.
Even in the presence of device noise, these novel shallower circuits yielded substantially low error rates.
arXiv Detail & Related papers (2023-12-07T11:30:09Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
We estimate the resources required to fault-tolerantly perform quantum phase estimation on a minimal chemical example.
We find that implementing even a simple chemistry circuit requires 1,000 qubits and 2,300 quantum error correction rounds.
arXiv Detail & Related papers (2023-07-06T18:00:10Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Automatically Differentiable Quantum Circuit for Many-qubit State
Preparation [1.5662820454886202]
We propose the automatically differentiable quantum circuit (ADQC) approach to efficiently prepare arbitrary quantum many-qubit states.
The circuit is optimized by updating the latent gates using back propagation to minimize the distance between the evolved and target states.
Our work sheds light on the "intelligent construction" of quantum circuits for many-qubit systems by combining with the machine learning methods.
arXiv Detail & Related papers (2021-04-30T12:22:26Z) - Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE [0.0]
VQE is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers.
We propose an alternative algorithm where the quantum circuit used for state preparation is removed entirely and replaced by a quantum control routine.
As with VQE, the objective function optimized is the expectation value of the qubit-mapped molecular Hamiltonian.
arXiv Detail & Related papers (2020-08-10T17:53:09Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.