Simulating challenging correlated molecules and materials on the
Sycamore quantum processor
- URL: http://arxiv.org/abs/2203.15291v1
- Date: Tue, 29 Mar 2022 07:11:40 GMT
- Title: Simulating challenging correlated molecules and materials on the
Sycamore quantum processor
- Authors: Ruslan N. Tazhigulov, Shi-Ning Sun, Reza Haghshenas, Huanchen Zhai,
Adrian T. K. Tan, Nicholas C. Rubin, Ryan Babbush, Austin J. Minnich, Garnet
Kin-Lic Chan
- Abstract summary: Simulating complex molecules and materials is an anticipated application of quantum devices.
We simulate static and dynamical electronic structure on a superconducting quantum processor.
Our work serves to convert artificial measures of quantum advantage into a physically relevant setting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating complex molecules and materials is an anticipated application of
quantum devices. With strong quantum advantage demonstrated in artificial
tasks, we examine how such advantage translates into modeling physical problems
of correlated electronic structure. We simulate static and dynamical electronic
structure on a superconducting quantum processor derived from Google's Sycamore
architecture for two representative correlated electron problems: the
nitrogenase iron-sulfur molecular clusters, and $\alpha$-ruthenium trichloride,
a proximate spin-liquid material. To do so, we simplify the electronic
structure into low-energy spin models that fit on the device. With extensive
error mitigation and assistance from classically simulated data, we achieve
quantitatively meaningful results deploying about 1/5 of the gate resources
used in artificial quantum advantage experiments on a similar architecture.
This increases to over 1/2 of the gate resources when choosing a model that
suits the hardware. Our work serves to convert artificial measures of quantum
advantage into a physically relevant setting.
Related papers
- Quantum Embedding of Non-local Quantum Many-body Interactions in Prototypal Anti-tumor Vaccine Metalloprotein on Near Term Quantum Computing Hardware [4.8962578963959675]
We present for the first time a quantum computer model simulation of a complex hemocyanin molecule.
Hemocyanin is an important respiratory protein involved in various physiological processes.
We conclude that the magnetic structure of hemocyanin is largely influenced by the many-body correction.
arXiv Detail & Related papers (2024-10-16T16:49:42Z) - Self-Consistent Determination of Single-Impurity Anderson Model Using Hybrid Quantum-Classical Approach on a Spin Quantum Simulator [3.5919681412083038]
In this paper, we experimentally demonstrate a hybrid quantum-classical approach to correlated materials.
We address the most computationally demanding aspect of the calculation, namely the computation of the Green's function.
As the number of qubits with high control fidelity continues to grow, our experimental findings pave the way for solving even more complex models.
arXiv Detail & Related papers (2024-10-10T10:49:40Z) - Electronic Correlations in Multielectron Silicon Quantum Dots [0.3793387630509845]
Silicon metal-oxide-semiconductor based quantum dots present a promising pathway for realizing practical quantum computers.
Hartree-Fock theory is an imperative tool for the electronic structure modelling of multi-electron quantum dots.
We present a Hartree-Fock-based method that accounts for these complexities for the modelling of silicon quantum dots.
arXiv Detail & Related papers (2024-07-05T06:46:38Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Coarse grained intermolecular interactions on quantum processors [0.0]
We develop a coarse-grained representation of the electronic response that is ideally suited for determining the ground state of weakly interacting molecules.
We demonstrate our method on IBM superconducting quantum processors.
We conclude that current-generation quantum hardware is capable of probing energies in this weakly bound but nevertheless chemically ubiquitous and biologically important regime.
arXiv Detail & Related papers (2021-10-03T09:56:47Z) - Optimizing Electronic Structure Simulations on a Trapped-ion Quantum
Computer using Problem Decomposition [41.760443413408915]
We experimentally demonstrate an end-to-end pipeline that focuses on minimizing quantum resources while maintaining accuracy.
Using density matrix embedding theory as a problem decomposition technique, and an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without freezing any electrons.
Our experimental results are an early demonstration of the potential for problem decomposition to accurately simulate large molecules on quantum hardware.
arXiv Detail & Related papers (2021-02-14T01:47:52Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.