論文の概要: Category Guided Attention Network for Brain Tumor Segmentation in MRI
- arxiv url: http://arxiv.org/abs/2203.15383v1
- Date: Tue, 29 Mar 2022 09:22:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 16:35:56.283094
- Title: Category Guided Attention Network for Brain Tumor Segmentation in MRI
- Title(参考訳): MRIにおける脳腫瘍切除のためのカテゴリー誘導注意ネットワーク
- Authors: Jiangyun Li, Hong Yu, Chen Chen, Meng Ding, Sen Zha
- Abstract要約: カテゴリー案内注意U-Net(CGA U-Net)という新しいセグメンテーションネットワークを提案する。
本モデルでは,より正確かつ安定した特徴写像の長距離依存性を計算コストを伴わずに捉えることのできる,注目機構に基づくスーパービジョンアテンションモジュール(SAM)を設計する。
BraTS 2019データセットの実験的結果は、提案手法がセグメント化性能と計算複雑性の両方において最先端のアルゴリズムより優れていることを示している。
- 参考スコア(独自算出の注目度): 6.685945448824158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective: Magnetic resonance imaging (MRI) has been widely used for the
analysis and diagnosis of brain diseases. Accurate and automatic brain tumor
segmentation is of paramount importance for radiation treatment. However, low
tissue contrast in tumor regions makes it a challenging task.Approach: We
propose a novel segmentation network named Category Guided Attention U-Net (CGA
U-Net). In this model, we design a Supervised Attention Module (SAM) based on
the attention mechanism, which can capture more accurate and stable long-range
dependency in feature maps without introducing much computational cost.
Moreover, we propose an intra-class update approach to reconstruct feature maps
by aggregating pixels of the same category. Main results: Experimental results
on the BraTS 2019 datasets show that the proposed method outperformers the
state-of-the-art algorithms in both segmentation performance and computational
complexity. Significance: The CGA U-Net can effectively capture the global
semantic information in the MRI image by using the SAM module, while
significantly reducing the computational cost. Code is available at
https://github.com/delugewalker/CGA-U-Net.
- Abstract(参考訳): 目的:MRIは脳疾患の分析と診断に広く用いられている。
放射線治療において, 正確な脳腫瘍分離が重要である。
しかし,腫瘍領域における組織コントラストの低さが課題となり,我々はCGA U-Net(Caegory Guided Attention U-Net)という新たなセグメンテーションネットワークを提案する。
本モデルでは,より正確かつ安定した特徴写像の長距離依存性を計算コストを伴わずに捉えることのできる,注意機構に基づくスーパービジョン注意モジュール(SAM)を設計する。
さらに,同一カテゴリの画素を集約して特徴マップを再構築するクラス内更新手法を提案する。
主な結果: BraTS 2019データセットの実験結果は、提案手法がセグメンテーション性能と計算複雑性の両方において最先端のアルゴリズムより優れていることを示している。
意義: CGA U-NetはSAMモジュールを用いてMRI画像のグローバルな意味情報を効果的にキャプチャし、計算コストを大幅に削減する。
コードはhttps://github.com/delugewalker/cga-u-netで入手できる。
関連論文リスト
- Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Two-stage MR Image Segmentation Method for Brain Tumors based on
Attention Mechanism [27.08977505280394]
CycleGAN(CycleGAN)に基づく協調・空間的注意生成対向ネットワーク(CASP-GAN)を提案する。
ジェネレータの性能は、コーディネート・アテンション(CA)モジュールと空間アテンション(SA)モジュールを導入することで最適化される。
元の医用画像の構造情報と詳細な情報を抽出する能力は、所望の画像をより高品質に生成するのに役立つ。
論文 参考訳(メタデータ) (2023-04-17T08:34:41Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Using U-Net Network for Efficient Brain Tumor Segmentation in MRI Images [4.3310896118860445]
本稿では,脳腫瘍セグメンテーションのためのU-Netの軽量実装を提案する。
提案アーキテクチャでは,提案する軽量U-Netをトレーニングするために大量のデータを必要としない。
軽量なU-NetはBITEデータセット上で非常に有望な結果を示し、平均交叉対合同(IoU)は89%に達する。
論文 参考訳(メタデータ) (2022-11-03T15:19:58Z) - Large-Kernel Attention for 3D Medical Image Segmentation [14.76728117630242]
本稿では,多臓器分割と腫瘍分割を正確に行うために,新しいLKアテンションモジュールを提案する。
畳み込みと自己注意の利点は、局所的な文脈情報、長距離依存、チャネル適応を含むLKアテンションモジュールで組み合わせられる。
モジュールはまた、計算コストを最適化するためにLK畳み込みを分解し、U-NetのようなFCNに簡単に組み込むことができる。
論文 参考訳(メタデータ) (2022-07-19T16:32:55Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
本稿では,GAN(Cycle-Consistency Generative Adversarial Networks)を用いた医用画像生成のためのデータ拡張手法を提案する。
提案モデルでは,正常画像から腫瘍画像を生成することができ,腫瘍画像から正常画像を生成することもできる。
本研究では,従来のデータ拡張手法と合成画像を用いた分類モデルを用いて,実画像を用いた分類モデルを訓練する。
論文 参考訳(メタデータ) (2020-11-15T14:01:24Z) - DeepSeg: Deep Neural Network Framework for Automatic Brain Tumor
Segmentation using Magnetic Resonance FLAIR Images [0.0]
グリオーマは最も一般的で攻撃的な脳腫瘍である。
FLAIR(Fluid-Attenuated Inversion Recovery) MRIは、腫瘍浸潤に関する情報を提供する。
本稿では,脳病変の完全自動検出とセグメンテーションのためのDeepSegという,新しい総合的なディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-04-26T09:50:02Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
そこで我々は,腫瘍周辺で最小の境界ボックスを見つけるために,軽量計算量で高速かつ自動化された手法を提案する。
この領域は、サブリージョン腫瘍セグメンテーションのトレーニングネットワークにおける前処理ステップとして使用できる。
提案手法は BraTS 2015 データセット上で評価され,得られた平均 DICE スコアは 0.73 である。
論文 参考訳(メタデータ) (2020-02-26T14:10:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。