Collision-Free Navigation using Evolutionary Symmetrical Neural Networks
- URL: http://arxiv.org/abs/2203.15522v1
- Date: Tue, 29 Mar 2022 13:02:14 GMT
- Title: Collision-Free Navigation using Evolutionary Symmetrical Neural Networks
- Authors: Hesham M. Eraqi, Mena Nagiub, Peter Sidra
- Abstract summary: This paper extends the previous work using evolutionary neural networks for reactive collision avoidance.
We are proposing a new method we have called symmetric neural networks.
The method improves the model's performance by enforcing constraints between the network weights.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collision avoidance systems play a vital role in reducing the number of
vehicle accidents and saving human lives. This paper extends the previous work
using evolutionary neural networks for reactive collision avoidance. We are
proposing a new method we have called symmetric neural networks. The method
improves the model's performance by enforcing constraints between the network
weights which reduces the model optimization search space and hence, learns
more accurate control of the vehicle steering for improved maneuvering. The
training and validation processes are carried out using a simulation
environment - the codebase is publicly available. Extensive experiments are
conducted to analyze the proposed method and evaluate its performance. The
method is tested in several simulated driving scenarios. In addition, we have
analyzed the effect of the rangefinder sensor resolution and noise on the
overall goal of reactive collision avoidance. Finally, we have tested the
generalization of the proposed method. The results are encouraging; the
proposed method has improved the model's learning curve for training scenarios
and generalization to the new test scenarios. Using constrained weights has
significantly improved the number of generations required for the Genetic
Algorithm optimization.
Related papers
- Neural Networks for Vehicle Routing Problem [0.0]
Route optimization can be viewed as a new challenge for neural networks.
Recent developments in machine learning provide a new toolset, for tackling complex problems.
The main area of application of neural networks is the area of classification and regression.
arXiv Detail & Related papers (2024-09-17T15:45:30Z) - Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
We present a novel method that estimates the time to collision using a neuromorphic event-based camera.
The proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data.
Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-10T02:37:36Z) - Model-Based Control with Sparse Neural Dynamics [23.961218902837807]
We propose a new framework for integrated model learning and predictive control.
We show that our framework can deliver better closed-loop performance than existing state-of-the-art methods.
arXiv Detail & Related papers (2023-12-20T06:25:02Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
A new type of neural network is presented using the rapid neural network paradigm.
It is found that the proposed emulator embedded neural network trains near-instantaneously, typically without loss of prediction accuracy.
arXiv Detail & Related papers (2023-09-12T22:34:34Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Controlled Sparsity via Constrained Optimization or: How I Learned to
Stop Tuning Penalties and Love Constraints [81.46143788046892]
We focus on the task of controlling the level of sparsity when performing sparse learning.
Existing methods based on sparsity-inducing penalties involve expensive trial-and-error tuning of the penalty factor.
We propose a constrained formulation where sparsification is guided by the training objective and the desired sparsity target in an end-to-end fashion.
arXiv Detail & Related papers (2022-08-08T21:24:20Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Ada-SISE: Adaptive Semantic Input Sampling for Efficient Explanation of
Convolutional Neural Networks [26.434705114982584]
We propose an efficient interpretation method for convolutional neural networks.
Experimental results show that the proposed method can reduce the execution time up to 30%.
arXiv Detail & Related papers (2021-02-15T19:10:00Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.