Neural Networks for Vehicle Routing Problem
- URL: http://arxiv.org/abs/2409.11290v1
- Date: Tue, 17 Sep 2024 15:45:30 GMT
- Title: Neural Networks for Vehicle Routing Problem
- Authors: László Kovács, Ali Jlidi,
- Abstract summary: Route optimization can be viewed as a new challenge for neural networks.
Recent developments in machine learning provide a new toolset, for tackling complex problems.
The main area of application of neural networks is the area of classification and regression.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Vehicle Routing Problem is about optimizing the routes of vehicles to meet the needs of customers at specific locations. The route graph consists of depots on several levels and customer positions. Several optimization methods have been developed over the years, most of which are based on some type of classic heuristic: genetic algorithm, simulated annealing, tabu search, ant colony optimization, firefly algorithm. Recent developments in machine learning provide a new toolset, the rich family of neural networks, for tackling complex problems. The main area of application of neural networks is the area of classification and regression. Route optimization can be viewed as a new challenge for neural networks. The article first presents an analysis of the applicability of neural network tools, then a novel graphical neural network model is presented in detail. The efficiency analysis based on test experiments shows the applicability of the proposed NN architecture.
Related papers
- RelChaNet: Neural Network Feature Selection using Relative Change Scores [0.0]
We introduce RelChaNet, a novel and lightweight feature selection algorithm that uses neuron pruning and regrowth in the input layer of a dense neural network.
Our approach generally outperforms the current state-of-the-art methods, and in particular improves the average accuracy by 2% on the MNIST dataset.
arXiv Detail & Related papers (2024-10-03T09:56:39Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
A new type of neural network is presented using the rapid neural network paradigm.
It is found that the proposed emulator embedded neural network trains near-instantaneously, typically without loss of prediction accuracy.
arXiv Detail & Related papers (2023-09-12T22:34:34Z) - When Deep Learning Meets Polyhedral Theory: A Survey [6.899761345257773]
In the past decade, deep became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural learning.
Meanwhile, the structure of neural networks converged back to simplerwise and linear functions.
arXiv Detail & Related papers (2023-04-29T11:46:53Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - BayesFT: Bayesian Optimization for Fault Tolerant Neural Network
Architecture [8.005491953251541]
We propose a novel Bayesian optimization method for fault tolerant neural network architecture (BayesFT)
Our framework has outperformed the state-of-the-art methods by up to 10 times on various tasks, such as image classification and object detection.
arXiv Detail & Related papers (2022-09-30T20:13:05Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
We study optimization problems where the objective function is modeled through feedforward neural networks with rectified linear unit activation.
We present a mixed-integer linear program based on existing popular big-$M$ formulations for optimizing over a single neural network.
arXiv Detail & Related papers (2021-12-13T20:50:54Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
Firefly neural architecture descent is a general framework for progressively and dynamically growing neural networks.
We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures.
In particular, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T04:47:18Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.