論文の概要: Interactive Audio-text Representation for Automated Audio Captioning
with Contrastive Learning
- arxiv url: http://arxiv.org/abs/2203.15526v1
- Date: Tue, 29 Mar 2022 13:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-30 21:36:00.696100
- Title: Interactive Audio-text Representation for Automated Audio Captioning
with Contrastive Learning
- Title(参考訳): コントラスト学習による音声自動キャプションのための対話型音声テキスト表現
- Authors: Chen Chen, Nana Hou, Yuchen Hu, Heqing Zou, Xiaofeng Qi, Eng Siong
Chng
- Abstract要約: インタラクティブなモダリティ表現を学習するための,CLIP-AACと呼ばれる新しいAACシステムを提案する。
提案するCLIP-AACでは,事前学習エンコーダにオーディオヘッドとテキストヘッドを導入し,音声テキスト情報を抽出する。
また、音声信号と2つの字幕の対応を学習することで、ドメイン差を狭めるためにコントラスト学習を適用する。
- 参考スコア(独自算出の注目度): 25.06635361326706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated Audio captioning (AAC) is a cross-modal task that generates natural
language to describe the content of input audio. Most prior works usually
extract single-modality acoustic features and are therefore sub-optimal for the
cross-modal decoding task. In this work, we propose a novel AAC system called
CLIP-AAC to learn interactive cross-modality representation with both acoustic
and textual information. Specifically, the proposed CLIP-AAC introduces an
audio-head and a text-head in the pre-trained encoder to extract audio-text
information. Furthermore, we also apply contrastive learning to narrow the
domain difference by learning the correspondence between the audio signal and
its paired captions. Experimental results show that the proposed CLIP-AAC
approach surpasses the best baseline by a significant margin on the Clotho
dataset in terms of NLP evaluation metrics. The ablation study indicates that
both the pre-trained model and contrastive learning contribute to the
performance gain of the AAC model.
- Abstract(参考訳): 自動音声キャプション(automated audio captioning, aac)は、入力音声の内容を記述する自然言語を生成するクロスモーダルタスクである。
ほとんどの先行研究は、通常単一モード音響特性を抽出し、従ってクロスモーダル復号処理に準最適である。
本研究では,音響情報とテキスト情報の両方を用いた対話型クロスモダリティ表現を学習するための新しいaacシステム clip-aacを提案する。
提案するCLIP-AACでは,事前学習エンコーダにオーディオヘッドとテキストヘッドを導入し,音声テキスト情報を抽出する。
さらに,音声信号と対字キャプションの対応を学習することにより,領域差を狭めるためにコントラスト学習を適用する。
実験結果から,提案手法はCLIP-AAC法よりも,NLP評価指標においてClothoデータセットの差が大きいことがわかった。
アブレーション研究は,事前学習モデルとコントラスト学習がともにaacモデルの性能向上に寄与することを示す。
関連論文リスト
- Weakly-supervised Automated Audio Captioning via text only training [1.504795651143257]
本稿では,テキストデータと事前学習されたCLAPモデルのみを前提として,AACモデルをトレーニングするための弱い教師付きアプローチを提案する。
提案手法をClosoとAudioCapsのデータセット上で評価し,完全に教師されたアプローチと比較して,最大83%の相対的な性能を実現する能力を示した。
論文 参考訳(メタデータ) (2023-09-21T16:40:46Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
本研究では、2つのエンコーダを用いて音素と音声を複数モーダル空間に導入するCTAP(Contrastive Token-Acoustic Pretraining)を提案する。
提案したCTAPモデルは、210k音声と音素ペアで訓練され、最小教師付きTS、VC、ASRを実現する。
論文 参考訳(メタデータ) (2023-09-01T12:35:43Z) - AKVSR: Audio Knowledge Empowered Visual Speech Recognition by
Compressing Audio Knowledge of a Pretrained Model [53.492751392755636]
本稿では、音声モダリティを用いて、視覚的モダリティの不十分な音声情報を補うために、AKVSR(AKVSR)を提案する。
提案手法の有効性を広範囲な実験により検証し,広範に使用されているLSS3データセット上で新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-08-15T06:38:38Z) - AudioFormer: Audio Transformer learns audio feature representations from
discrete acoustic codes [6.375996974877916]
離散音響符号の取得により音声特徴表現を学習するAudioFormerという手法を提案する。
以上の結果から,AudioFormerはモノモーダル音声分類モデルに比べて性能が大幅に向上したことが示された。
論文 参考訳(メタデータ) (2023-08-14T15:47:25Z) - CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained
Language-Vision Models [50.42886595228255]
本稿では,橋梁としての視覚的モダリティを活用して,所望のテキスト・オーディオ対応を学習することを提案する。
我々は、事前訓練されたコントラスト言語画像事前学習モデルによって符号化されたビデオフレームを考慮し、条件付き拡散モデルを用いてビデオの音声トラックを生成する。
論文 参考訳(メタデータ) (2023-06-16T05:42:01Z) - Efficient Audio Captioning Transformer with Patchout and Text Guidance [74.59739661383726]
本稿では, [1] で提案した Patchout を利用したフルトランスフォーマーアーキテクチャを提案する。
キャプション生成は、事前訓練された分類モデルにより抽出されたテキストオーディオセットタグに部分的に条件付けされる。
提案手法は,DCASE Challenge 2022のタスク6Aで審査員賞を受賞している。
論文 参考訳(メタデータ) (2023-04-06T07:58:27Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
VATLM (Visual-Audio-Text Language Model) を用いたクロスモーダル表現学習フレームワークを提案する。
提案したVATLMは、モダリティに依存しない情報をモデル化するために、統一されたバックボーンネットワークを使用する。
これら3つのモダリティを1つの共有セマンティック空間に統合するために、VATLMは統一トークンのマスク付き予測タスクで最適化される。
論文 参考訳(メタデータ) (2022-11-21T09:10:10Z) - Joint Speech Recognition and Audio Captioning [37.205642807313545]
室内と屋外の両方で録音された音声サンプルは、しばしば二次音源で汚染される。
自動音声キャプション(AAC)の進展する分野と、徹底的に研究された自動音声認識(ASR)を一体化することを目的としている。
本稿では,ASRタスクとAACタスクのエンドツーエンド共同モデリングのためのいくつかのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-03T04:42:43Z) - Automatic Audio Captioning using Attention weighted Event based
Embeddings [25.258177951665594]
本稿では,AACのための軽量(学習可能なパラメータが少ない)Bi-LSTM再帰層を有するエンコーダデコーダアーキテクチャを提案する。
AEDを用いた効率的な埋込み抽出器と時間的注意と拡張技術を組み合わせることで,既存の文献を超越できることを示す。
論文 参考訳(メタデータ) (2022-01-28T05:54:19Z) - Unsupervised Cross-Modal Audio Representation Learning from Unstructured
Multilingual Text [69.55642178336953]
教師なし音声表現学習へのアプローチを提案する。
3重項ニューラルネットワークアーキテクチャに基づいて、意味論的に関連付けられたクロスモーダル情報を用いて、音声トラック関連性を推定する。
我々のアプローチは、様々なアノテーションスタイルと、このコレクションの異なる言語に不変であることを示す。
論文 参考訳(メタデータ) (2020-03-27T07:37:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。