論文の概要: Towards Collaborative Intelligence: Routability Estimation based on
Decentralized Private Data
- arxiv url: http://arxiv.org/abs/2203.16009v1
- Date: Wed, 30 Mar 2022 02:35:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-31 15:38:05.948842
- Title: Towards Collaborative Intelligence: Routability Estimation based on
Decentralized Private Data
- Title(参考訳): コラボレーティブ・インテリジェンスに向けて:分散プライベートデータに基づくルータビリティ推定
- Authors: Jingyu Pan, Chen-Chia Chang, Zhiyao Xie, Ang Li, Minxue Tang, Tunhou
Zhang, Jiang Hu and Yiran Chen
- Abstract要約: 本研究では,EDAにおける機械学習アプリケーションに対するフェデレートラーニングに基づくアプローチを提案する。
このアプローチでは、MLモデルを複数のクライアントのデータで協調的にトレーニングできるが、データのプライバシを尊重するためのデータへの明示的なアクセスは行わない。
包括的データセットの実験により、協調トレーニングは個々のローカルモデルと比較して精度を11%向上することが示された。
- 参考スコア(独自算出の注目度): 33.22449628584873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applying machine learning (ML) in design flow is a popular trend in EDA with
various applications from design quality predictions to optimizations. Despite
its promise, which has been demonstrated in both academic researches and
industrial tools, its effectiveness largely hinges on the availability of a
large amount of high-quality training data. In reality, EDA developers have
very limited access to the latest design data, which is owned by design
companies and mostly confidential. Although one can commission ML model
training to a design company, the data of a single company might be still
inadequate or biased, especially for small companies. Such data availability
problem is becoming the limiting constraint on future growth of ML for chip
design. In this work, we propose an Federated-Learning based approach for
well-studied ML applications in EDA. Our approach allows an ML model to be
collaboratively trained with data from multiple clients but without explicit
access to the data for respecting their data privacy. To further strengthen the
results, we co-design a customized ML model FLNet and its personalization under
the decentralized training scenario. Experiments on a comprehensive dataset
show that collaborative training improves accuracy by 11% compared with
individual local models, and our customized model FLNet significantly
outperforms the best of previous routability estimators in this collaborative
training flow.
- Abstract(参考訳): 設計フローに機械学習(ML)を適用することは、設計品質予測から最適化まで、さまざまなアプリケーションでEDAで一般的なトレンドである。
学術研究と工業用ツールの両方で実証されているその約束にもかかわらず、その効果は大量の高品質のトレーニングデータが利用可能であることに大きく影響している。
実際、EDA開発者は最新のデザインデータに非常に限られたアクセス権を持っている。
mlモデルのトレーニングを設計会社に委託することは可能だが、特に中小企業の場合、単一の企業のデータは不適切あるいは偏りがある可能性がある。
このようなデータ可用性問題は、チップ設計におけるMLの将来的な成長の制限となっている。
本研究では,EDA におけるよく研究された ML アプリケーションに対するフェデレートラーニングに基づくアプローチを提案する。
このアプローチでは、MLモデルを複数のクライアントのデータで協調的にトレーニングできるが、データのプライバシを尊重するためのデータへの明示的なアクセスは行わない。
この結果をさらに強化するため,分散トレーニングシナリオでカスタマイズしたmlモデルflnetとパーソナライズを共同設計した。
包括的データセットを用いた実験では、各局所モデルと比較して協調学習が精度を11%向上し、我々のカスタマイズされたモデルFLNetは、この協調トレーニングフローにおいて、過去のroutability 推定器の最高の性能を著しく上回っている。
関連論文リスト
- Personalized Federated Learning with Mixture of Models for Adaptive Prediction and Model Fine-Tuning [22.705411388403036]
本稿では,新しい個人化フェデレーション学習アルゴリズムを提案する。
各クライアントは、局所的に微調整されたモデルと複数のフェデレートされたモデルを組み合わせることでパーソナライズされたモデルを構築する。
実データセットに関する理論的解析と実験は、このアプローチの有効性を裏付けるものである。
論文 参考訳(メタデータ) (2024-10-28T21:20:51Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python [0.0]
モデル共有AI(AIMS)は、コラボレーティブモデル開発、モデル前駆者追跡、モデルデプロイメントを合理化するように設計された、使いやすいMLOpsプラットフォームである。
AIMSは、協調的なプロジェクト空間と、見当たらない評価データに基づいてモデル提出をランク付けする標準化されたモデル評価プロセスを備えている。
AIMSでは、Scikit-Learn、Keras、PyTorch、ONNXで構築されたMLモデルを、ライブREST APIや自動生成されたWebアプリにデプロイすることができる。
論文 参考訳(メタデータ) (2023-09-27T15:24:39Z) - Can Public Large Language Models Help Private Cross-device Federated Learning? [58.05449579773249]
言語モデルのプライベート・フェデレーション・ラーニング(FL)について検討する。
公開データは、大小両方の言語モデルのプライバシーとユーティリティのトレードオフを改善するために使われてきた。
提案手法は,プライベートなデータ分布に近い公開データをサンプリングするための理論的基盤を持つ新しい分布マッチングアルゴリズムである。
論文 参考訳(メタデータ) (2023-05-20T07:55:58Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Optimizing the AI Development Process by Providing the Best Support
Environment [0.756282840161499]
機械学習の主なステージは、問題理解、データ管理、モデル構築、モデル展開、メンテナンスである。
このフレームワークは、ディープラーニングの進歩を使ってデータ拡張を実行するために、python言語を使用して構築された。
論文 参考訳(メタデータ) (2023-04-29T00:44:50Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning(FL)は、機械学習モデルのデバイス上での協調トレーニングのためのフレームワークである。
FLにおける最初の取り組みは、クライアント間で平均的なパフォーマンスを持つ単一のグローバルモデルを学ぶことに焦点を当てたが、グローバルモデルは、与えられたクライアントに対して任意に悪いかもしれない。
我々は,各局所データ分布が未知の基底分布の混合であるというフレキシブルな仮定の下で,フェデレーションMTLについて検討した。
論文 参考訳(メタデータ) (2021-08-23T15:47:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。