論文の概要: Learning Fair Models without Sensitive Attributes: A Generative Approach
- arxiv url: http://arxiv.org/abs/2203.16413v2
- Date: Wed, 02 Oct 2024 20:15:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-04 17:53:36.013620
- Title: Learning Fair Models without Sensitive Attributes: A Generative Approach
- Title(参考訳): 肯定的属性のない公正なモデルを学ぶ: 生成的アプローチ
- Authors: Huaisheng Zhu, Enyan Dai, Hui Liu, Suhang Wang,
- Abstract要約: 本研究では,関係する特徴を探索することにより,重要属性を含まないフェアモデル学習の新たな課題について検討する。
トレーニングデータから感度特性を効果的に推定する確率的生成フレームワークを提案する。
実世界のデータセットを用いた実験結果から,本フレームワークの有効性が示された。
- 参考スコア(独自算出の注目度): 33.196044483534784
- License:
- Abstract: Most existing fair classifiers rely on sensitive attributes to achieve fairness. However, for many scenarios, we cannot obtain sensitive attributes due to privacy and legal issues. The lack of sensitive attributes challenges many existing fair classifiers. Though we lack sensitive attributes, for many applications, there usually exists features or information of various formats that are relevant to sensitive attributes. For example, purchase history of a person can reflect his or her race, which would help for learning fair classifiers on race. However, the work on exploring relevant features for learning fair models without sensitive attributes is rather limited. Therefore, in this paper, we study a novel problem of learning fair models without sensitive attributes by exploring relevant features. We propose a probabilistic generative framework to effectively estimate the sensitive attribute from the training data with relevant features in various formats and utilize the estimated sensitive attribute information to learn fair models. Experimental results on real-world datasets show the effectiveness of our framework in terms of both accuracy and fairness.
- Abstract(参考訳): 既存のフェア分類器の多くは、公平性を達成するためにセンシティブな属性に依存している。
しかし、多くのシナリオでは、プライバシーや法的な問題によるセンシティブな属性は得られない。
繊細な属性の欠如は、多くの既存の公平な分類法に挑戦する。
センシティブな属性は欠如していますが、多くのアプリケーションには、通常、センシティブな属性に関連する様々なフォーマットの特徴や情報があります。
例えば、ある人の購入履歴は人種を反映し、人種の公平な分類法を学ぶのに役立つ。
しかし、センシティブな属性を持たない公正なモデルを学ぶための関連する機能を探究する作業は、かなり限られている。
そこで,本稿では,意味のある特徴を探求することによって,重要属性を含まないフェアモデル学習の新たな課題について検討する。
そこで本研究では,様々な形態の特徴を持つ学習データから感性属性を効果的に推定する確率的生成フレームワークを提案し,その推定感性属性情報を用いて公正なモデル学習を行う。
実世界のデータセットを用いた実験結果は,精度と公平性の両方の観点から,我々のフレームワークの有効性を示す。
関連論文リスト
- What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
強化学習問題では、エージェントはリターンを最大化しながら長期的な公正性を考慮する必要がある。
近年の研究では様々なフェアネスの概念が提案されているが、RL問題における不公平性がどのように生じるかは定かではない。
我々は、環境力学から生じる不平等を明示的に捉える、ダイナミックスフェアネスという新しい概念を導入する。
論文 参考訳(メタデータ) (2024-04-16T22:47:59Z) - High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning [54.86882315023791]
一般化ゼロショット学習(HDAFL)のための高識別属性特徴学習(High-Discriminative Attribute Feature Learning)という革新的な手法を提案する。
HDAFLは複数の畳み込みカーネルを使用して、画像の属性と高い相関性を持つ識別領域を自動的に学習する。
また、属性間の識別能力を高めるために、Transformerベースの属性識別エンコーダを導入する。
論文 参考訳(メタデータ) (2024-04-07T13:17:47Z) - Achieve Fairness without Demographics for Dermatological Disease
Diagnosis [17.792332189055223]
そこで本研究では,テストフェーズにおいて,そのような情報を用いることなく,感度特性の公平な予測を可能にする手法を提案する。
特徴の絡み合いが公正性に与える影響を強調した先行研究から着想を得て,重要属性や対象属性に関連する特徴を捉えることにより,モデルの特徴を高める。
これにより、機密属性に関連する機能に頼ることなく、モデルがターゲット属性に関連する機能に基づいてのみ分類できることが保証される。
論文 参考訳(メタデータ) (2024-01-16T02:49:52Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
公平性は、特に顔領域において、ディープラーニングの識別モデルを訓練する際に重要である。
モデルは、特定の特性(年齢や肌の色など)と無関係な属性(下流タスク)を関連付ける傾向がある
本稿では,これらの相関を緩和し,公平性を向上する手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T19:51:10Z) - Fairness Under Demographic Scarce Regime [7.523105080786704]
フェアネスと精度のトレードオフを改善する属性分類器を構築するためのフレームワークを提案する。
不確実な感度特性を持つ試料に公正性制約を課すことは、公正性-正確性トレードオフに悪影響を及ぼす可能性があることを示す。
我々のフレームワークは、ほとんどのベンチマークで真に敏感な属性に対する公平性制約で訓練されたモデルより優れている。
論文 参考訳(メタデータ) (2023-07-24T19:07:34Z) - Towards Assumption-free Bias Mitigation [47.5131072745805]
本稿では,バイアス緩和のための特徴相互作用をモデル化することにより,関連する属性を自動的に検出する仮定フリーフレームワークを提案する。
4つの実世界のデータセットに対する実験結果から,提案手法が不公平な予測行動を著しく軽減できることが示された。
論文 参考訳(メタデータ) (2023-07-09T05:55:25Z) - Fair Classification via Domain Adaptation: A Dual Adversarial Learning
Approach [14.344142985726853]
公平な分類のための領域適応を探求する新しい問題について検討する。
対象ドメインの公平な分類のために、ソースドメインからセンシティブな属性を適応させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T02:53:18Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - You Can Still Achieve Fairness Without Sensitive Attributes: Exploring
Biases in Non-Sensitive Features [29.94644351343916]
本稿では,これらの特徴を同時利用して正確な予測とモデルの正則化を行う新しいフレームワークを提案する。
実世界のデータセットにおける実験結果は,提案モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-04-29T17:52:11Z) - Fairness-Aware Learning with Prejudice Free Representations [2.398608007786179]
本稿では,潜在性識別特徴を効果的に識別し,治療できる新しいアルゴリズムを提案する。
このアプローチは、モデルパフォーマンスを改善するために差別のない機能を集めるのに役立つ。
論文 参考訳(メタデータ) (2020-02-26T10:06:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。