論文の概要: DDNeRF: Depth Distribution Neural Radiance Fields
- arxiv url: http://arxiv.org/abs/2203.16626v1
- Date: Wed, 30 Mar 2022 19:21:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-01 16:14:26.782757
- Title: DDNeRF: Depth Distribution Neural Radiance Fields
- Title(参考訳): DDNeRF:深さ分布ニューラルラジアンス場
- Authors: David Dadon, Ohad Fried, Yacov Hel-Or
- Abstract要約: DDNeRF(Deep Distribution Neural Radiance Field)は、トレーニング中の放射線のサンプリング効率を大幅に向上させる新しい手法である。
粗いモデルを用いて、入力体積の透過性の内部分布を予測し、体積の総密度を推定する。
このより詳細な分布は、ファインモデルのサンプリング手順を導出する。
- 参考スコア(独自算出の注目度): 12.283891012446647
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, the field of implicit neural representation has progressed
significantly. Models such as neural radiance fields (NeRF), which uses
relatively small neural networks, can represent high-quality scenes and achieve
state-of-the-art results for novel view synthesis. Training these types of
networks, however, is still computationally very expensive. We present depth
distribution neural radiance field (DDNeRF), a new method that significantly
increases sampling efficiency along rays during training while achieving
superior results for a given sampling budget. DDNeRF achieves this by learning
a more accurate representation of the density distribution along rays. More
specifically, we train a coarse model to predict the internal distribution of
the transparency of an input volume in addition to the volume's total density.
This finer distribution then guides the sampling procedure of the fine model.
This method allows us to use fewer samples during training while reducing
computational resources.
- Abstract(参考訳): 近年では、暗黙的な神経表現の分野が著しく進歩している。
比較的小さなニューラルネットワークを使用するneural radiance fields(nerf)のようなモデルは、高品質なシーンを表現でき、新しいビュー合成のために最先端の結果を得ることができる。
しかし、これらのタイプのネットワークのトレーニングはまだ計算コストが非常に高い。
本研究は, トレーニング中の放射線のサンプリング効率を大幅に向上させるとともに, 所定のサンプリング予算に対して優れた結果を得る新しい手法であるDDNeRFを提案する。
DDNeRFは、光線に沿った密度分布をより正確に表現することでこれを達成している。
より具体的には、体積の総密度に加えて入力体積の透明度の内部分布を予測するために粗いモデルを訓練する。
このより詳細な分布は、ファインモデルのサンプリング手順を導く。
この方法では,計算資源を減らしながら,トレーニング中に少ないサンプルを使用できる。
関連論文リスト
- On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors [2.3265565167163906]
ベイズニューラルネットワークは、ディープニューラルネットワークにおける不確実性をモデル化するための有望なアプローチである。
ニューラルネットワークの 後部分布からサンプルを生成することは 大きな課題です
この方向の進歩の1つは、モンテカルロ・マルコフ連鎖サンプリングアルゴリズムへの適応的なステップサイズの導入である。
本稿では,これらの手法が,ステップサイズやバッチサイズが小さくても,サンプリングした分布にかなりの偏りがあることを実証する。
論文 参考訳(メタデータ) (2024-03-13T15:21:14Z) - ProNeRF: Learning Efficient Projection-Aware Ray Sampling for
Fine-Grained Implicit Neural Radiance Fields [27.008124938806944]
メモリフットプリント(NeRFに似ている)、スピード(HyperReelより速い)、品質(K-Planesより速い)の最適なトレードオフを提供するProNeRFを提案する。
我々のProNeRFは最先端の計測値であり、最も優れたサンプルベース手法であるHyperReelよりも15-23倍高速で、PSNRは0.65dB高く、PSNRは0.95dB高い。
論文 参考訳(メタデータ) (2023-12-13T13:37:32Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - Sampling weights of deep neural networks [1.2370077627846041]
完全に接続されたニューラルネットワークの重みとバイアスに対して,効率的なサンプリングアルゴリズムと組み合わせた確率分布を導入する。
教師付き学習環境では、内部ネットワークパラメータの反復最適化や勾配計算は不要である。
サンプルネットワークが普遍近似器であることを証明する。
論文 参考訳(メタデータ) (2023-06-29T10:13:36Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
本稿では,スパース入力センサビューから観測される大規模な屋外運転シーンをモデル化することで,NeRFを大幅に改善するCLONeRを提案する。
これは、NeRFフレームワーク内の占有率と色学習を、それぞれLiDARとカメラデータを用いてトレーニングされた個別のMulti-Layer Perceptron(MLP)に分離することで実現される。
さらに,NeRFモデルと平行に3D Occupancy Grid Maps(OGM)を構築する手法を提案し,この占有グリッドを利用して距離空間のレンダリングのために線に沿った点のサンプリングを改善する。
論文 参考訳(メタデータ) (2022-09-02T17:44:50Z) - AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance
Fields [8.214695794896127]
新たなビュー合成は、スパース観測から直接神経放射場を学習することで、近年革新されている。
この新たなパラダイムによる画像のレンダリングは、ボリュームレンダリング方程式の正確な4分の1は、各光線に対して大量のサンプルを必要とするため、遅い。
本稿では,必要なサンプル点数を最大限に削減する方法を学習し,方向性を示す新しいデュアルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-21T05:59:13Z) - R2L: Distilling Neural Radiance Field to Neural Light Field for
Efficient Novel View Synthesis [76.07010495581535]
一つのピクセルをレンダリングするには、数百回もNeural Radiance Fieldネットワークに問い合わせる必要がある。
NeLFは、新しい視点において、NeRFに対してより直接的な表現を提示する。
ディープNeLFネットワークをうまく学習する鍵は、十分なデータを持つことである。
論文 参考訳(メタデータ) (2022-03-31T17:57:05Z) - Learning Neural Light Fields with Ray-Space Embedding Networks [51.88457861982689]
我々は、コンパクトで、光線に沿った統合放射率を直接予測する新しいニューラル光場表現を提案する。
提案手法は,Stanford Light Field データセットのような,高密度の前方向きデータセットの最先端品質を実現する。
論文 参考訳(メタデータ) (2021-12-02T18:59:51Z) - NeuSample: Neural Sample Field for Efficient View Synthesis [129.10351459066501]
本稿では,ニューラルサンプル場を命名する軽量モジュールを提案する。
提案したサンプルフィールドは、線をサンプル分布にマッピングし、点座標に変換し、ボリュームレンダリングのために放射場に供給することができる。
我々はNeuSampleが高速な推論速度を保ちながら、NeRFよりも優れたレンダリング品質を実現することを示す。
論文 参考訳(メタデータ) (2021-11-30T16:43:49Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。