論文の概要: Flat-topped Probability Density Functions for Mixture Models
- arxiv url: http://arxiv.org/abs/2203.17027v1
- Date: Thu, 31 Mar 2022 13:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-01 22:14:55.769856
- Title: Flat-topped Probability Density Functions for Mixture Models
- Title(参考訳): 混合モデルに対するフラットトッピング確率密度関数
- Authors: Osamu Fujita
- Abstract要約: 本稿では, 分布モードにほぼ一様であり, 様々な分布形状に適応する確率密度関数 (PDF) について検討する。
計算的トラクタビリティの観点から、Fermi-Dirac あるいはロジスティック関数に基づくPDFは、その形状パラメータを推定する上で有利である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates probability density functions (PDFs) that are
continuous everywhere, nearly uniform around the mode of distribution, and
adaptable to a variety of distribution shapes ranging from bell-shaped to
rectangular. From the viewpoint of computational tractability, the PDF based on
the Fermi-Dirac or logistic function is advantageous in estimating its shape
parameters. The most appropriate PDF for $n$-variate distribution is of the
form:
$p\left(\mathbf{x}\right)\propto\left[\cosh\left(\left[\left(\mathbf{x}-\mathbf{m}\right)^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\mathbf{m}\right)\right]^{n/2}\right)+\cosh\left(r^{n}\right)\right]^{-1}$
where $\mathbf{x},\mathbf{m}\in\mathbb{R}^{n}$, $\boldsymbol{\Sigma}$ is an
$n\times n$ positive definite matrix, and $r>0$ is a shape parameter. The
flat-topped PDFs can be used as a component of mixture models in machine
learning to improve goodness of fit and make a model as simple as possible.
- Abstract(参考訳): 本稿では, 分布モードにほぼ均一な連続的な確率密度関数 (PDF) について検討し, ベル形状から長方形に至るまで, 様々な分布形状に適応できることを示す。
計算的トラクタビリティの観点から、Fermi-Dirac あるいはロジスティック関数に基づくPDFは、その形状パラメータを推定する上で有利である。
p\left(\mathbf{x}\right)\propto\left[\cosh\left(\left[\left(\mathbf{x}-\mathbf{m}\right)^{\mathsf{t}}\boldsymbol{\sigma}^{-1}\left(\mathbf{x}-\mathbf{m}\right)\right]^{n/2}\right)+\cosh\left(r^{n}\right)\right]^{-1}$ ここで$\mathbf{x},\mathbf{m}\in\mathbb{r}^{n}$,$\boldsymbol{\sigma}$は$n\times n$ の正の行列であり、$0>$0 のパラメータである。
フラットトップのpdfは、機械学習における混合モデルのコンポーネントとして使用することで、適合性の良さを改善し、できるだけ簡単なモデルにすることができる。
関連論文リスト
- Provably learning a multi-head attention layer [55.2904547651831]
マルチヘッドアテンション層は、従来のフィードフォワードモデルとは分離したトランスフォーマーアーキテクチャの重要な構成要素の1つである。
本研究では,ランダムな例から多面的注意層を実証的に学習する研究を開始する。
最悪の場合、$m$に対する指数的依存は避けられないことを示す。
論文 参考訳(メタデータ) (2024-02-06T15:39:09Z) - Optimal Estimator for Linear Regression with Shuffled Labels [17.99906229036223]
本稿では,シャッフルラベルを用いた線形回帰の課題について考察する。
mathbb Rntimes m の $mathbf Y、mathbb Rntimes p の mathbf Pi、mathbb Rptimes m$ の mathbf B、mathbb Rntimes m$ の $mathbf Win mathbb Rntimes m$ である。
論文 参考訳(メタデータ) (2023-10-02T16:44:47Z) - Convergence of a Normal Map-based Prox-SGD Method under the KL
Inequality [0.0]
我々は、$symbol$k$収束問題に対して、新しいマップベースのアルゴリズム(mathsfnorMtext-mathsfSGD$)を提案する。
論文 参考訳(メタデータ) (2023-05-10T01:12:11Z) - Efficient Sampling of Stochastic Differential Equations with Positive
Semi-Definite Models [91.22420505636006]
本稿では, ドリフト関数と拡散行列を考慮し, 微分方程式からの効率的なサンプリング問題を扱う。
1/varepsilonは$m2d log (1/varepsilon)$である。
以上の結果から,真の解がより滑らかになるにつれて,どのような凸性も必要とせず,次元の呪いを回避できることが示唆された。
論文 参考訳(メタデータ) (2023-03-30T02:50:49Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Metric Hypertransformers are Universal Adapted Maps [4.83420384410068]
メートル法ハイパートランスフォーマー(MHT)は、任意の適応マップを近似可能な複雑性で、$F:mathscrXmathbbZrightarrow数学scrYmathbbZ$を近似することができる。
我々の結果は、そのような$mathscrX$ および $mathscrY$ と互換性のある最初の(近似的な)普遍近似定理を提供する。
論文 参考訳(メタデータ) (2022-01-31T10:03:46Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
関数 $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
ここでは、$|mathbb E[R(z)] - tilde R(z)|_F を示す。
論文 参考訳(メタデータ) (2021-09-06T14:21:43Z) - Nonparametric Learning of Two-Layer ReLU Residual Units [22.870658194212744]
本稿では,線形整列ユニット(ReLU)を活性化した2層残基を学習するアルゴリズムについて述べる。
解析最小化器はそのパラメータと非線形性の観点から、正確な地上構造ネットワークを表現できる機能として層ワイドな目的を設計する。
我々は,アルゴリズムの統計的強い一貫性を証明し,実験によるアルゴリズムの堅牢性とサンプル効率を実証する。
論文 参考訳(メタデータ) (2020-08-17T22:11:26Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。