Entanglement Negativity and Mutual Information after a Quantum Quench:
Exact Link from Space-Time Duality
- URL: http://arxiv.org/abs/2203.17254v3
- Date: Mon, 3 Oct 2022 09:38:28 GMT
- Title: Entanglement Negativity and Mutual Information after a Quantum Quench:
Exact Link from Space-Time Duality
- Authors: Bruno Bertini, Katja Klobas, and Tsung-Cheng Lu
- Abstract summary: We study the growth of entanglement between two adjacent regions in a tripartite, one-dimensional many-body system after a quantum quench.
We derive an exact, universal relation between the entanglement negativity and Renyi-1/2 mutual information which holds at times shorter than the sizes of all subsystems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the growth of entanglement between two adjacent regions in a
tripartite, one-dimensional many-body system after a quantum quench. Combining
a replica trick with a space-time duality transformation, we derive an exact,
universal relation between the entanglement negativity and Renyi-1/2 mutual
information which holds at times shorter than the sizes of all subsystems. Our
proof is directly applicable to any translationally invariant local quantum
circuit, i.e., any lattice system in discrete time characterised by local
interactions, irrespective of the nature of its dynamics. Our derivation
indicates that such a relation can be directly extended to any system where
information spreads with a finite maximal velocity.
Related papers
- Strict area law entanglement versus chirality [15.809015657546915]
Chirality is a gapped phase of matter in two spatial dimensions that can be manifested through non-zero thermal or electrical Hall conductance.
We prove two no-go theorems that forbid such chirality for a quantum state in a finite dimensional local Hilbert space with strict area law entanglement entropies.
arXiv Detail & Related papers (2024-08-19T18:00:01Z) - Quantum information spreading in generalised dual-unitary circuits [44.99833362998488]
We show that local operators spread at the speed of light as in dual-unitary circuits.
We use these properties to find a closed-form expression for the entanglement membrane in these circuits.
arXiv Detail & Related papers (2023-12-05T18:09:27Z) - Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - Scrambling and Recovery of Quantum Information in Inhomogeneous Quenches
in Two-dimensional Conformal Field Theories [0.0]
We study quantum quench processes induced by the M"obius/sine-square deformation of the Hamiltonian in two-dimensional conformal field theories.
These quantum quenches allow us to study scrambling and recovery of quantum information.
arXiv Detail & Related papers (2023-02-16T00:47:50Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Fractal, logarithmic and volume-law entangled non-thermal steady states
via spacetime duality [0.0]
We show how a duality transformation between space and time on one hand, and unitarity and non-unitarity on the other, can be used to realize steady state phases of non-unitary dynamics.
In spacetime-duals of chaotic unitary circuits, this mapping allows us to uncover a non-thermal volume-law entangled phase.
We also find novel steady state phases with emphfractal entanglement scaling.
arXiv Detail & Related papers (2021-03-11T18:57:29Z) - Nonlocality, entropy creation, and entanglement in quantum many-body
systems [0.0]
We propose a reinterpretation and reformulation of the single-particle Green's function in nonrelativistic quantum many-body theory.
We postulate that the multiplicity of each quantized solution is directly related to the ensemble averaged spectrum and the entropy created by measurement of the particle.
arXiv Detail & Related papers (2021-01-04T14:08:30Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Revival dynamics in a traversable wormhole [0.0]
We study the revival dynamics of signals sent between two quantum chaotic systems.
We find clear signatures of wormhole behavior.
For small $N$ we also observe revivals and show that they arise from a different, non-gravitational mechanism.
arXiv Detail & Related papers (2020-03-09T03:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.