論文の概要: A Novel Multimodal Approach for Studying the Dynamics of Curiosity in
Small Group Learning
- arxiv url: http://arxiv.org/abs/2204.00545v1
- Date: Fri, 1 Apr 2022 16:12:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-04 13:44:25.818069
- Title: A Novel Multimodal Approach for Studying the Dynamics of Curiosity in
Small Group Learning
- Title(参考訳): 小グループ学習における好奇心のダイナミクス研究のための新しいマルチモーダルアプローチ
- Authors: Tanmay Sinha, Zhen Bai, Justine Cassell
- Abstract要約: 本稿では,仲間の観察可能な行動と根底にある好奇心状態とを結びつける,好奇心の統合社会認知的記述を提案する。
我々は、好奇心に寄与する個人機能と対人機能と、これらの機能を満たすマルチモーダル動作を区別する。
この研究は、社会的文脈における学習中にモーメント・バイ・モーメントの好奇心を認識して誘発できる学習技術を設計するためのステップである。
- 参考スコア(独自算出の注目度): 2.55061802822074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Curiosity is a vital metacognitive skill in educational contexts, leading to
creativity, and a love of learning. And while many school systems increasingly
undercut curiosity by teaching to the test, teachers are increasingly
interested in how to evoke curiosity in their students to prepare them for a
world in which lifelong learning and reskilling will be more and more
important. One aspect of curiosity that has received little attention, however,
is the role of peers in eliciting curiosity. We present what we believe to be
the first theoretical framework that articulates an integrated socio-cognitive
account of curiosity that ties observable behaviors in peers to underlying
curiosity states. We make a bipartite distinction between individual and
interpersonal functions that contribute to curiosity, and multimodal behaviors
that fulfill these functions. We validate the proposed framework by leveraging
a longitudinal latent variable modeling approach. Findings confirm a positive
predictive relationship between the latent variables of individual and
interpersonal functions and curiosity, with the interpersonal functions
exercising a comparatively stronger influence. Prominent behavioral
realizations of these functions are also discovered in a data-driven manner. We
instantiate the proposed theoretical framework in a set of strategies and
tactics that can be incorporated into learning technologies to indicate, evoke,
and scaffold curiosity. This work is a step towards designing learning
technologies that can recognize and evoke moment-by-moment curiosity during
learning in social contexts and towards a more complete multimodal learning
analytics. The underlying rationale is applicable more generally for developing
computer support for other metacognitive and socio-emotional skills.
- Abstract(参考訳): 好奇心は教育的文脈において重要なメタ認知スキルであり、創造性や学習への愛につながる。
そして、多くの学校システムでは、テストを教えることで好奇心を弱める傾向にあるが、教師たちは学生に好奇心を呼び起こして、生涯学習やリスキルがますます重要になる世界に備える方法に興味を抱いている。
しかし、あまり注目されていない好奇心の1つの側面は、好奇心を引き出すことにおけるピアの役割である。
我々は、仲間の観察可能な行動と基礎となる好奇心状態とを結びつける好奇心の社会認知的統合的説明を述べる最初の理論的枠組みであると考えられるものを提案する。
我々は、好奇心に寄与する個人機能と対人機能と、これらの機能を満たすマルチモーダル動作を区別する。
縦型潜在変数モデリング手法を用いて,提案手法の有効性を検証する。
発見は、個人と対人機能の潜伏変数と好奇心の間の正の予測関係を、相対的に強い影響を行使する対人機能と確認する。
これらの関数の顕著な挙動実現は、データ駆動の方法でも発見される。
我々は,提案する理論フレームワークを,学習技術に組み込むための戦略と戦術のセットでインスタンス化し,その有効性を示す。
この研究は、社会的文脈における学習中のモーメント・バイ・モーメントの好奇心を認識し、誘発できる学習技術を設計し、より完全なマルチモーダル学習分析へと進むためのステップである。
この根拠は、より一般に、他のメタ認知的、社会感情的なスキルのためのコンピュータサポートの開発に適用できる。
関連論文リスト
- Guiding Empowerment Model: Liberating Neurodiversity in Online Higher Education [2.703906279696349]
本稿では,学習と機能に影響を与える動的要因のスペクトルを同定することにより,ニューロディバージェントと状況に制約のある学習者の公平なギャップを解消する。
本稿では,タスク管理のカスタマイズ,多様なコンテンツアクセスのガイド,マルチモーダルコラボレーションのガイドなどにより,このモードを適用することで,主要な学習障壁を取り除くことを提案する。
論文 参考訳(メタデータ) (2024-10-24T16:05:38Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Quiz-based Knowledge Tracing [61.9152637457605]
知識追跡は、学習相互作用に基づいて個人の進化する知識状態を評価することを目的としている。
QKTは、既存の方法と比較して最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-04-05T12:48:42Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Five Properties of Specific Curiosity You Didn't Know Curious Machines
Should Have [4.266866385061999]
我々は、動物と機械の好奇心の分野を包括的に多分野的に調査する。
我々は、特定の好奇心の最も重要な特性の5つのうちの1つと考えるものを紹介し、定義する。
概念強化学習エージェントにおいて,これらの特性をどのように組み合わせて実装するかを示す。
論文 参考訳(メタデータ) (2022-12-01T00:18:56Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - Vygotskian Autotelic Artificial Intelligence: Language and Culture
Internalization for Human-Like AI [16.487953861478054]
本稿では,人工寿命スキル発見の探求において,新たなAIパラダイムを提案する。
我々は特に言語に焦点をあて、その構造と内容が人工エージェントにおける新しい認知機能の発展にどう役立つかに注目した。
言語と体格の相互作用から生まれる新しい人工認知機能の例を明らかにすることで、アプローチを正当化する。
論文 参考訳(メタデータ) (2022-06-02T16:35:41Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Social Engagement versus Learning Engagement -- An Exploratory Study of
FutureLearn Learners [61.58283466715385]
大規模なオープンオンラインコース (MOOCs) は増加傾向にあるが、エンロリーのごく一部しかMOOCsを完了していない。
この研究は、MOOCにおける研究の進展とともに、学習者がピアとどのように相互作用するかに特に関係している。
この研究は、社会的構成主義的アプローチを採用し、協調学習を促進するFutureLearnプラットフォーム上で行われた。
論文 参考訳(メタデータ) (2020-08-11T16:09:10Z) - The growth and form of knowledge networks by kinesthetic curiosity [0.39325957466009187]
ネットワーク科学、統計物理学、哲学が、特定の多様性と知覚的な好奇心の心理学的側面を統一し拡張するアプローチにどのように統合できるかを示す。
好奇心の審美的モデルは、モデルに基づく強化学習の熟考的予測と相容れない。
論文 参考訳(メタデータ) (2020-06-04T15:30:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。