Assimilation of Satellite Active Fires Data
- URL: http://arxiv.org/abs/2204.00686v1
- Date: Fri, 1 Apr 2022 20:11:28 GMT
- Title: Assimilation of Satellite Active Fires Data
- Authors: James D. Haley
- Abstract summary: The aim of this thesis is to develop techniques to help combat the impacts of wildfires by improving wildfire modeling capabilities.
In particular, we develop a method for constructing the history of a fire, a new technique for assimilating wildfire data, and a method for modifying the behavior of a modeled fire.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wildland fires pose an increasingly serious problem in our society. The
number and severity of these fires has been rising for many years. Wildfires
pose direct threats to life and property as well as threats through ancillary
effects like reduced air quality. The aim of this thesis is to develop
techniques to help combat the impacts of wildfires by improving wildfire
modeling capabilities by using satellite fire observations. Already much work
has been done in this direction by other researchers. Our work seeks to expand
the body of knowledge using mathematically sound methods to utilize information
about wildfires that considers the uncertainties inherent in the satellite
data.
In this thesis we explore methods for using satellite data to help initialize
and steer wildfire simulations. In particular, we develop a method for
constructing the history of a fire, a new technique for assimilating wildfire
data, and a method for modifying the behavior of a modeled fire by inferring
information about the fuels in the fire domain. These goals rely on being able
to estimate the time a fire first arrived at every location in a geographic
region of interest. Because detailed knowledge of real wildfires is typically
unavailable, the basic procedure for developing and testing the methods in this
thesis will be to first work with simulated data so that the estimates produced
can be compared with known solutions. The methods thus developed are then
applied to real-world scenarios. Analysis of these scenarios shows that the
work with constructing the history of fires and data assimilation improves
improves fire modeling capabilities. The research is significant because it
gives us a better understanding of the capabilities and limitations of using
satellite data to inform wildfire models and it points the way towards new
avenues for modeling fire behavior.
Related papers
- Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning [0.43012765978447565]
This study presents an in-depth analysis of bushfire severity in Australia over the last twelve years.
By utilizing Landsat imagery and integrating spectral indices like NDVI, NBR, and Burn Index, along with topographical and climatic factors, we developed a robust predictive model.
The model achieved high accuracy, 86.13%, demonstrating its effectiveness in predicting fire severity across diverse Australian ecosystems.
arXiv Detail & Related papers (2024-09-18T04:57:48Z) - A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
This research investigates proactive methods for detecting and handling wildfires in the United States.
The specific objective of this research covers proactive detection and prevention of wildfires using advanced technology.
Various methods, such as AI-enabled remote sensing and 5G-based active monitoring, can enhance proactive wildfire detection and management.
arXiv Detail & Related papers (2024-02-27T04:09:30Z) - Reinforcement Learning for Wildfire Mitigation in Simulated Disaster
Environments [39.014859667729375]
Wildfires pose a threat to life, property, ecology, cultural heritage, and critical infrastructure.
SimFire is a versatile wildland fire projection simulator designed to generate realistic wildfire scenarios.
SimHarness is a modular agent-based machine learning wrapper capable of automatically generating land management strategies.
arXiv Detail & Related papers (2023-11-27T15:37:05Z) - Prescribed Fire Modeling using Knowledge-Guided Machine Learning for
Land Management [2.158876211806538]
This paper introduces a novel machine learning (ML) framework that enables rapid emulation of prescribed fires.
By incorporating domain knowledge, the proposed method helps reduce physical inconsistencies in fuel density estimates in data-scarce scenarios.
We also overcome the problem of biased estimation of fire spread metrics by incorporating a hierarchical modeling structure.
arXiv Detail & Related papers (2023-10-02T19:38:04Z) - Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models
with Satellite Data for Initializing Wildfire Forecasts [0.0]
Recent progress in using satellites to detect fire locations provides the opportunity to use measurements to improve fire spread forecasts.
This work develops a method for inferring the history of a wildfire from satellite measurements.
arXiv Detail & Related papers (2023-09-05T23:24:34Z) - FORFIS: A forest fire firefighting simulation tool for education and
research [90.40304110009733]
We present a forest fire firefighting simulation tool named FORFIS that is implemented in Python.
Our tool is published underv3 license and comes with a GUI as well as additional output functionality.
arXiv Detail & Related papers (2023-05-29T09:14:38Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Preliminary Wildfire Detection Using State-of-the-art PTZ (Pan, Tilt,
Zoom) Camera Technology and Convolutional Neural Networks [0.0]
Wildfires are uncontrolled fires in the environment that can be caused by humans or nature.
In 2020 alone, wildfires in California have burned 4.2 million acres, damaged 10,500 buildings or structures, and killed more than 31 people.
The objective of the research is to detect forest fires in their earlier stages to prevent them from spreading.
arXiv Detail & Related papers (2021-09-10T19:30:37Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
We investigate the information that dynamic community structures reveal about the dynamics of wildfires.
Experiments with the MODIS dataset of fire events in the Amazon basing were conducted.
Our results show that the dynamic communities can reveal wildfire patterns observed throughout the year.
arXiv Detail & Related papers (2020-11-02T17:31:47Z) - Uncertainty Aware Wildfire Management [6.997483623023005]
Recent wildfires in the United States have resulted in loss of life and billions of dollars.
There are limited resources to be deployed over a massive area and the spread of the fire is challenging to predict.
This paper proposes a decision-theoretic approach to combat wildfires.
arXiv Detail & Related papers (2020-10-15T17:47:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.