Prescribed Fire Modeling using Knowledge-Guided Machine Learning for
Land Management
- URL: http://arxiv.org/abs/2310.01593v1
- Date: Mon, 2 Oct 2023 19:38:04 GMT
- Title: Prescribed Fire Modeling using Knowledge-Guided Machine Learning for
Land Management
- Authors: Somya Sharma Chatterjee, Kelly Lindsay, Neel Chatterjee, Rohan Patil,
Ilkay Altintas De Callafon, Michael Steinbach, Daniel Giron, Mai H. Nguyen,
Vipin Kumar
- Abstract summary: This paper introduces a novel machine learning (ML) framework that enables rapid emulation of prescribed fires.
By incorporating domain knowledge, the proposed method helps reduce physical inconsistencies in fuel density estimates in data-scarce scenarios.
We also overcome the problem of biased estimation of fire spread metrics by incorporating a hierarchical modeling structure.
- Score: 2.158876211806538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the increasing threat of devastating wildfires has
underscored the need for effective prescribed fire management. Process-based
computer simulations have traditionally been employed to plan prescribed fires
for wildfire prevention. However, even simplified process models like QUIC-Fire
are too compute-intensive to be used for real-time decision-making, especially
when weather conditions change rapidly. Traditional ML methods used for fire
modeling offer computational speedup but struggle with physically inconsistent
predictions, biased predictions due to class imbalance, biased estimates for
fire spread metrics (e.g., burned area, rate of spread), and generalizability
in out-of-distribution wind conditions. This paper introduces a novel machine
learning (ML) framework that enables rapid emulation of prescribed fires while
addressing these concerns. By incorporating domain knowledge, the proposed
method helps reduce physical inconsistencies in fuel density estimates in
data-scarce scenarios. To overcome the majority class bias in predictions, we
leverage pre-existing source domain data to augment training data and learn the
spread of fire more effectively. Finally, we overcome the problem of biased
estimation of fire spread metrics by incorporating a hierarchical modeling
structure to capture the interdependence in fuel density and burned area.
Notably, improvement in fire metric (e.g., burned area) estimates offered by
our framework makes it useful for fire managers, who often rely on these fire
metric estimates to make decisions about prescribed burn management.
Furthermore, our framework exhibits better generalization capabilities than the
other ML-based fire modeling methods across diverse wind conditions and
ignition patterns.
Related papers
- FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Modelling wildland fire burn severity in California using a spatial
Super Learner approach [0.04188114563181614]
Given the increasing prevalence of wildland fires in the Western US, there is a critical need to develop tools to understand and accurately predict burn severity.
We develop a machine learning model to predict post-fire burn severity using pre-fire remotely sensed data.
When implemented, this model has the potential to the loss of human life, property, resources, and ecosystems in California.
arXiv Detail & Related papers (2023-11-25T22:09:14Z) - Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models
with Satellite Data for Initializing Wildfire Forecasts [0.0]
Recent progress in using satellites to detect fire locations provides the opportunity to use measurements to improve fire spread forecasts.
This work develops a method for inferring the history of a wildfire from satellite measurements.
arXiv Detail & Related papers (2023-09-05T23:24:34Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved
Wildfire Spread Behavior [0.0]
High-fidelity models are too computationally expensive for use in real-time fire response.
Low-fidelity models sacrifice some physical accuracy and generalizability via the integration of empirical measurements.
Machine learning techniques offer the ability to bridge these objectives by learning first-principles physics.
arXiv Detail & Related papers (2022-10-28T21:23:03Z) - Assimilation of Satellite Active Fires Data [0.0]
The aim of this thesis is to develop techniques to help combat the impacts of wildfires by improving wildfire modeling capabilities.
In particular, we develop a method for constructing the history of a fire, a new technique for assimilating wildfire data, and a method for modifying the behavior of a modeled fire.
arXiv Detail & Related papers (2022-04-01T20:11:28Z) - Attention on Classification for Fire Segmentation [82.75113406937194]
We propose a Convolutional Neural Network (CNN) for joint classification and segmentation of fire in images.
We use a spatial self-attention mechanism to capture long-range dependency between pixels, and a new channel attention module which uses the classification probability as an attention weight.
arXiv Detail & Related papers (2021-11-04T19:52:49Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
We show that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
Our work validates that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
arXiv Detail & Related papers (2021-06-18T08:29:53Z) - Uncertainty Aware Wildfire Management [6.997483623023005]
Recent wildfires in the United States have resulted in loss of life and billions of dollars.
There are limited resources to be deployed over a massive area and the spread of the fire is challenging to predict.
This paper proposes a decision-theoretic approach to combat wildfires.
arXiv Detail & Related papers (2020-10-15T17:47:31Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.