論文の概要: CL-XABSA: Contrastive Learning for Cross-lingual Aspect-based Sentiment
Analysis
- arxiv url: http://arxiv.org/abs/2204.00791v1
- Date: Sat, 2 Apr 2022 07:40:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-05 14:06:51.636359
- Title: CL-XABSA: Contrastive Learning for Cross-lingual Aspect-based Sentiment
Analysis
- Title(参考訳): cl-xabsa: 言語横断型感情分析のためのコントラスト学習
- Authors: Nankai Lin, Yingwen Fu, Xiaotian Lin, Aimin Yang, Shengyi Jiang
- Abstract要約: 本稿では,言語横断的アスペクトベース知覚分析のためのコントラスト学習フレームワークCL-XABSAを提案する。
具体的には、トークン埋め込み(TL-CTE)のトークンレベルのコントラスト学習とトークン埋め込み(SL-CTE)の感情レベルのコントラスト学習という2つのコントラスト戦略を設計する。
我々のフレームワークは訓練中に複数の言語でデータセットを受信できるので、XABSAタスクだけでなく、マルチリンガルなアスペクトベースの感情分析(MABSA)にも適用できます。
- 参考スコア(独自算出の注目度): 4.60495447017298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an extensive research in the field of Natural language processing (NLP),
aspect-based sentiment analysis (ABSA) is the task of predicting the sentiment
expressed in a text relative to the corresponding aspect. Unfortunately, most
languages lack of sufficient annotation resources, thus more and more recent
researchers focus on cross-lingual aspect-based sentiment analysis (XABSA).
However, most recent researches only concentrate on cross-lingual data
alignment instead of model alignment. To this end, we propose a novel
framework, CL-XABSA: Contrastive Learning for Cross-lingual Aspect-Based
Sentiment Analysis. Specifically, we design two contrastive strategies, token
level contrastive learning of token embeddings (TL-CTE) and sentiment level
contrastive learning of token embeddings (SL-CTE), to regularize the semantic
space of source and target language to be more uniform. Since our framework can
receive datasets in multiple languages during training, our framework can be
adapted not only for XABSA task, but also for multilingual aspect-based
sentiment analysis (MABSA). To further improve the performance of our model, we
perform knowledge distillation technology leveraging data from unlabeled target
language. In the distillation XABSA task, we further explore the comparative
effectiveness of different data (source dataset, translated dataset, and
code-switched dataset). The results demonstrate that the proposed method has a
certain improvement in the three tasks of XABSA, distillation XABSA and MABSA.
For reproducibility, our code for this paper is available at
https://github.com/GKLMIP/CL-XABSA.
- Abstract(参考訳): 自然言語処理(NLP)分野における広範な研究として、アスペクトベース感情分析(ABSA)は、対応するアスペクトに対してテキストで表現された感情を予測するタスクである。
残念なことに、ほとんどの言語には十分なアノテーションリソースがないため、近年の研究者は言語横断的なアスペクトベースの感情分析(XABSA)に注力している。
しかし、最近の研究は、モデルアライメントではなく、言語間データアライメントのみに集中している。
そこで本研究では,言語横断型感情分析のための新しい枠組み cl-xabsa: contrastive learning を提案する。
具体的には、トークン埋め込み(TL-CTE)のトークンレベルのコントラスト学習とトークン埋め込み(SL-CTE)の感情レベルのコントラスト学習という2つのコントラスト戦略を設計し、ソースとターゲット言語のセマンティクス空間をより均一に調整する。
我々のフレームワークは訓練中に複数の言語でデータセットを受信できるので、XABSAタスクだけでなく、マルチリンガルなアスペクトベースの感情分析(MABSA)にも適用できます。
モデルの性能をさらに向上させるために,ラベルなしの目標言語からのデータを活用した知識蒸留技術を行う。
蒸留XABSAタスクでは、異なるデータ(ソースデータセット、翻訳データセット、コード変更データセット)の比較の有効性について検討する。
その結果,提案手法はXABSA, 蒸留XABSA, MABSAの3つのタスクにおいて一定の改善が得られた。
本論文のコードはhttps://github.com/GKLMIP/CL-XABSA.comで公開されている。
関連論文リスト
- M-ABSA: A Multilingual Dataset for Aspect-Based Sentiment Analysis [23.523947343171926]
M-ABSAは、7つのドメインと21の言語にまたがる包括的なデータセットである。
私たちの主な焦点は三重項抽出であり、アスペクトの項、アスペクトのカテゴリ、感情の極性を特定することである。
実験により,このデータセットは多言語・多ドメイン移動学習などの多様な評価タスクを可能にすることがわかった。
論文 参考訳(メタデータ) (2025-02-17T14:16:01Z) - Evaluating and explaining training strategies for zero-shot cross-lingual news sentiment analysis [8.770572911942635]
いくつかの低リソース言語で新しい評価データセットを導入する。
我々は、機械翻訳の使用を含む、様々なアプローチを実験する。
言語間の相似性は言語間移動の成功を予測するのに十分ではないことを示す。
論文 参考訳(メタデータ) (2024-09-30T07:59:41Z) - Cross-Lingual Word Alignment for ASEAN Languages with Contrastive Learning [5.5119571570277826]
言語間単語アライメントは、自然言語処理タスクにおいて重要な役割を果たす。
近年,BiLSTMを用いたエンコーダデコーダモデルを提案する。
本稿では,BiLSTMに基づくエンコーダデコーダフレームワークにコントラスト学習を取り入れることを提案する。
論文 参考訳(メタデータ) (2024-07-06T11:56:41Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
言語間のセマンティックパーシングは、高いソース言語(例えば英語)から少ないトレーニングデータを持つ低リソース言語へのパーシング能力を伝達する。
そこで本稿では,最適輸送を用いた係り受け変数間の言語間相違を明示的に最小化することで,言語間セマンティック解析のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T04:52:31Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - A Dual-Contrastive Framework for Low-Resource Cross-Lingual Named Entity
Recognition [5.030581940990434]
クロスランガルな名前付きエンティティ認識(NER)は、低リソース言語におけるデータ空白問題を緩和できるため、最近研究ホットスポットになっている。
本稿では,言語間NERのための2言語コントラストフレームワーク ConCNER について述べる。
論文 参考訳(メタデータ) (2022-04-02T07:59:13Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。