論文の概要: AutoProtoNet: Interpretability for Prototypical Networks
- arxiv url: http://arxiv.org/abs/2204.00929v1
- Date: Sat, 2 Apr 2022 19:42:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-07 05:13:16.132519
- Title: AutoProtoNet: Interpretability for Prototypical Networks
- Title(参考訳): AutoProtoNet: プロトタイプネットワークの解釈可能性
- Authors: Pedro Sandoval-Segura and Wallace Lawson
- Abstract要約: プロトタイプネットワークに解釈可能性を構築するAutoProtoNetを導入する。
この埋め込み空間のポイントをどのように視覚化し、クラス表現を理解するために利用するかを示す。
また,ヒトが不適切な分類パラメータをデバッグできるプロトタイプの改良手法も考案した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In meta-learning approaches, it is difficult for a practitioner to make sense
of what kind of representations the model employs. Without this ability, it can
be difficult to both understand what the model knows as well as to make
meaningful corrections. To address these challenges, we introduce AutoProtoNet,
which builds interpretability into Prototypical Networks by training an
embedding space suitable for reconstructing inputs, while remaining convenient
for few-shot learning. We demonstrate how points in this embedding space can be
visualized and used to understand class representations. We also devise a
prototype refinement method, which allows a human to debug inadequate
classification parameters. We use this debugging technique on a custom
classification task and find that it leads to accuracy improvements on a
validation set consisting of in-the-wild images. We advocate for
interpretability in meta-learning approaches and show that there are
interactive ways for a human to enhance meta-learning algorithms.
- Abstract(参考訳): メタラーニングのアプローチでは、モデルがどのような表現をしているかを実践者が理解することは困難である。
この能力がなければ、モデルが何を知っているかを理解することと、意味のある修正を行うことの両方を理解することは困難である。
これらの課題に対処するために,我々は,入力の再構成に適した埋め込み空間をトレーニングすることで,プロトタイプネットワークに解釈可能性を構築するautoprotonetを導入する。
この埋め込み空間内の点を可視化し、クラス表現を理解する方法を示す。
また,ヒトが不適切な分類パラメータをデバッグできるプロトタイプの改良手法も考案した。
我々は、このデバッグ手法をカスタム分類タスクで使用し、wildイメージからなる検証セットの精度向上に繋がることを示す。
我々はメタラーニングアプローチにおける解釈可能性を主張し、人間がメタラーニングアルゴリズムを強化するインタラクティブな方法が存在することを示す。
関連論文リスト
- Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
本稿では,学習可能なパラメータをわずかに限定して,事前学習した視覚変換器を下流認識タスクに適用する方法を示す。
学習可能で軽量なモジュールを用いてタスク固有のクエリを合成する。
本手法はメモリ制約下での最先端性能を実現し,実環境における適用性を示す。
論文 参考訳(メタデータ) (2024-07-09T15:45:04Z) - Context-Aware Meta-Learning [52.09326317432577]
本研究では,大規模言語モデルのエミュレートを行うメタ学習アルゴリズムを提案する。
我々のアプローチは、11のメタラーニングベンチマークのうち8つで最先端のアルゴリズムであるP>M>Fを上回り、一致します。
論文 参考訳(メタデータ) (2023-10-17T03:35:27Z) - Consistent Explanations by Contrastive Learning [15.80891456718324]
Grad-CAMのようなポストホック評価技術により、人間は特定のネットワーク決定に責任のある空間領域を検査することができる。
より一貫した説明を生み出すためにモデルをトレーニングするための新しいトレーニング手法を提案する。
提案手法であるContrastive Grad-CAM Consistency (CGC) は,人間のアノテーションと一致したGrad-CAM解釈熱マップを生成する。
論文 参考訳(メタデータ) (2021-10-01T16:49:16Z) - A Representation Learning Perspective on the Importance of
Train-Validation Splitting in Meta-Learning [14.720411598827365]
各タスクからのデータを、メタトレーニング中にトレインとバリデーションセットに分割する。
列車価分割は,表現性を損なうことなく,学習した表現を低ランクにすることを促すと論じる。
サンプル効率は低ランク性から恩恵を受けるため、分割戦略は見当たらないテストタスクを解決するのに非常に少数のサンプルを必要とする。
論文 参考訳(メタデータ) (2021-06-29T17:59:33Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
MAMLライクなアルゴリズムから派生した表現を解析するための理論的フレームワークを提案する。
我々は,勾配降下による微調整により得られる最良予測器のリスク境界を提示し,アルゴリズムが共有構造を有効活用できることを実証する。
この分離の結果、マイニングベースのメソッド、例えばmamlは、少数ショット学習における"frozen representation"目標を持つメソッドよりも優れている。
論文 参考訳(メタデータ) (2021-05-05T17:56:00Z) - Model-Agnostic Explanations using Minimal Forcing Subsets [11.420687735660097]
そこで本研究では,モデル決定に欠かせない最小限のトレーニングサンプルを同定する,モデルに依存しない新しいアルゴリズムを提案する。
本アルゴリズムは,制約付き最適化問題を解くことにより,このような「欠かせない」サンプルの集合を反復的に同定する。
結果から,本アルゴリズムは局所モデルの振る舞いをよりよく理解する上で,効率的かつ容易に記述できるツールであることがわかった。
論文 参考訳(メタデータ) (2020-11-01T22:45:16Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Complementing Representation Deficiency in Few-shot Image
Classification: A Meta-Learning Approach [27.350615059290348]
本稿では,MCRNetを用いたメタラーニング手法を提案する。
特に、潜時空間を埋め込んで、潜時符号を余分な表現情報で再構成し、表現不足を補完する。
我々のエンドツーエンドフレームワークは、3つの標準的な数ショット学習データセット上の画像分類における最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-07-21T13:25:54Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z) - Semi-supervised Learning with a Teacher-student Network for Generalized
Attribute Prediction [7.462336024223667]
本稿では,視覚特性予測問題を解くための半教師付き学習について述べる。
提案手法は,ファッション属性予測のための様々なベンチマーク上での競合性能を実現する。
論文 参考訳(メタデータ) (2020-07-14T02:06:24Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。