論文の概要: Self-Supervised Speech Representations Preserve Speech Characteristics
while Anonymizing Voices
- arxiv url: http://arxiv.org/abs/2204.01677v1
- Date: Mon, 4 Apr 2022 17:48:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-05 14:48:04.312367
- Title: Self-Supervised Speech Representations Preserve Speech Characteristics
while Anonymizing Voices
- Title(参考訳): 音声を匿名化しながら音声特性を保存する自己監督音声表現
- Authors: Abner Hernandez, Paula Andrea P\'erez-Toro, Juan Camilo
V\'asquez-Correa, Juan Rafael Orozco-Arroyave, Andreas Maier, Seung Hee Yang
- Abstract要約: 我々は、自己教師付き音声表現を用いて、複数の音声変換モデルを訓練する。
変換音声は、元の音声の1%以内に低い単語誤り率を保持する。
調音・韻律・発声・音韻に関連する音声特徴を匿名音声から抽出できることを示す。
- 参考スコア(独自算出の注目度): 15.136348385992047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collecting speech data is an important step in training speech recognition
systems and other speech-based machine learning models. However, the issue of
privacy protection is an increasing concern that must be addressed. The current
study investigates the use of voice conversion as a method for anonymizing
voices. In particular, we train several voice conversion models using
self-supervised speech representations including Wav2Vec2.0, Hubert and
UniSpeech. Converted voices retain a low word error rate within 1% of the
original voice. Equal error rate increases from 1.52% to 46.24% on the
LibriSpeech test set and from 3.75% to 45.84% on speakers from the VCTK corpus
which signifies degraded performance on speaker verification. Lastly, we
conduct experiments on dysarthric speech data to show that speech features
relevant to articulation, prosody, phonation and phonology can be extracted
from anonymized voices for discriminating between healthy and pathological
speech.
- Abstract(参考訳): 音声認識データ収集は,音声認識システムやその他の音声認識モデルを学ぶ上で重要なステップである。
しかし、プライバシー保護の問題に対処しなければならない懸念が高まっている。
本研究は,音声の匿名化手法としての音声変換について検討する。
特に,Wav2Vec2.0,Hubert,UniSpeechなどの自己教師型音声表現を用いて音声変換モデルを訓練する。
変換音声は、元の音声の1%以内に低い単語誤り率を保持する。
librispeechテストセットでは、同じエラーレートが1.52%から46.24%に増加し、vctkコーパスの話者では3.75%から45.84%に向上した。
最後に, 調音, 韻律, 音韻, 音韻学に関連する音声の特徴を, 匿名化音声から抽出し, 健常音声と病理音声を識別できることを示すために, 構音データを用いた実験を行った。
関連論文リスト
- Real-time Detection of AI-Generated Speech for DeepFake Voice Conversion [4.251500966181852]
本研究は,8人の有名な人物の実際の音声と,その音声を検索型音声変換を用いて互いに変換する。
エクストリーム・グラディエント・ブースティング・モデルは99.3%の平均的な分類精度を達成でき、音声の1秒あたり0.004ミリ秒のリアルタイムな分類が可能であることが判明した。
論文 参考訳(メタデータ) (2023-08-24T12:26:15Z) - ACE-VC: Adaptive and Controllable Voice Conversion using Explicitly
Disentangled Self-supervised Speech Representations [12.20522794248598]
自己教師付き学習で訓練された音声表現を用いたゼロショット音声変換法を提案する。
我々は,発話を言語内容,話者特性,発話スタイルなどの特徴に分解するマルチタスクモデルを開発した。
次に,その表現から音声信号を効果的に再構成できるピッチと時間予測器を備えた合成モデルを開発する。
論文 参考訳(メタデータ) (2023-02-16T08:10:41Z) - Cross-lingual Self-Supervised Speech Representations for Improved
Dysarthric Speech Recognition [15.136348385992047]
本研究では, 変形性関節症に対するASRシステムの訓練機能として, Wav2Vec を用いた自己教師型音声表現の有用性について検討した。
我々は、Wav2Vec、Hubert、および言語間XLSRモデルから抽出された特徴を持つ音響モデルを訓練する。
結果から,大容量データに事前学習した音声表現は,単語誤り率(WER)を向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-04-04T17:36:01Z) - Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement
by Re-Synthesis [67.73554826428762]
本稿では,AR/VRにおける高忠実度通信のための新しい音声・視覚音声強調フレームワークを提案する。
提案手法は音声・視覚音声の手がかりを利用してニューラル音声のコードを生成することで,ノイズ信号からクリーンでリアルな音声を効率的に合成する。
論文 参考訳(メタデータ) (2022-03-31T17:57:10Z) - Wav2vec-Switch: Contrastive Learning from Original-noisy Speech Pairs
for Robust Speech Recognition [52.71604809100364]
音声の文脈化表現に雑音のロバスト性をエンコードするwav2vec-Switchを提案する。
具体的には、オリジナルノイズの多い音声ペアを同時にwav2vec 2.0ネットワークに供給する。
既存のコントラスト学習タスクに加えて、原音声と雑音音声の量子化表現を追加の予測対象に切り替える。
論文 参考訳(メタデータ) (2021-10-11T00:08:48Z) - Analysis and Tuning of a Voice Assistant System for Dysfluent Speech [7.233685721929227]
音声認識システムは、音や単語の繰り返し、音の伸長、可聴ブロックなどの非効率な音声によく当てはまらない。
既存のハイブリッド音声認識システムにおける復号化パラメータを調整することにより、流速障害のある個人に対して、isWERを24%改善できることを示す。
論文 参考訳(メタデータ) (2021-06-18T20:58:34Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
ワンショット音声変換は、音声表現のアンタングルメントによって効果的に実現できる。
コンテンツエンコーディングにはベクトル量子化(VQ)を使用し、トレーニング中に相互情報(MI)を相関指標として導入する。
実験結果は,提案手法が効果的に非絡み合った音声表現を学習する際の優位性を反映している。
論文 参考訳(メタデータ) (2021-06-18T13:50:38Z) - UniSpeech: Unified Speech Representation Learning with Labeled and
Unlabeled Data [54.733889961024445]
ラベル付きデータとラベル付きデータの両方を用いて音声表現を学習するためのUniSpeechという統合事前学習手法を提案する。
公立CommonVoiceコーパス上での言語間表現学習におけるUniSpeechの有効性を評価する。
論文 参考訳(メタデータ) (2021-01-19T12:53:43Z) - Speaker De-identification System using Autoencoders and Adversarial
Training [58.720142291102135]
本稿では,対人訓練とオートエンコーダに基づく話者識別システムを提案する。
実験結果から, 対向学習とオートエンコーダを組み合わせることで, 話者検証システムの誤り率が同等になることがわかった。
論文 参考訳(メタデータ) (2020-11-09T19:22:05Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
本稿では,明示的な韻律モデルと深層話者埋め込み学習を用いたVCシステムを提案する。
韻律補正器は音素埋め込みを取り入れ、典型的な音素持続時間とピッチ値を推定する。
変換モデルは、音素埋め込みと典型的な韻律特徴を入力として、変換された音声を生成する。
論文 参考訳(メタデータ) (2020-11-03T13:08:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。