論文の概要: ACE-VC: Adaptive and Controllable Voice Conversion using Explicitly
Disentangled Self-supervised Speech Representations
- arxiv url: http://arxiv.org/abs/2302.08137v1
- Date: Thu, 16 Feb 2023 08:10:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 14:34:08.934711
- Title: ACE-VC: Adaptive and Controllable Voice Conversion using Explicitly
Disentangled Self-supervised Speech Representations
- Title(参考訳): ACE-VC: 難解な自己教師付き音声表現を用いた適応的・制御可能な音声変換
- Authors: Shehzeen Hussain, Paarth Neekhara, Jocelyn Huang, Jason Li, Boris
Ginsburg
- Abstract要約: 自己教師付き学習で訓練された音声表現を用いたゼロショット音声変換法を提案する。
我々は,発話を言語内容,話者特性,発話スタイルなどの特徴に分解するマルチタスクモデルを開発した。
次に,その表現から音声信号を効果的に再構成できるピッチと時間予測器を備えた合成モデルを開発する。
- 参考スコア(独自算出の注目度): 12.20522794248598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a zero-shot voice conversion method using speech
representations trained with self-supervised learning. First, we develop a
multi-task model to decompose a speech utterance into features such as
linguistic content, speaker characteristics, and speaking style. To disentangle
content and speaker representations, we propose a training strategy based on
Siamese networks that encourages similarity between the content representations
of the original and pitch-shifted audio. Next, we develop a synthesis model
with pitch and duration predictors that can effectively reconstruct the speech
signal from its decomposed representation. Our framework allows controllable
and speaker-adaptive synthesis to perform zero-shot any-to-any voice conversion
achieving state-of-the-art results on metrics evaluating speaker similarity,
intelligibility, and naturalness. Using just 10 seconds of data for a target
speaker, our framework can perform voice swapping and achieves a speaker
verification EER of 5.5% for seen speakers and 8.4% for unseen speakers.
- Abstract(参考訳): 本研究では,自己教師付き学習で学習した音声表現を用いたゼロショット音声変換手法を提案する。
まず,言語内容,話者特性,発話スタイルなどの特徴に音声発話を分解するマルチタスクモデルを開発した。
コンテンツと話者表現を分離するために,オリジナル音声とピッチシフト音声のコンテンツ表現の類似性を促進するsiameseネットワークに基づく学習戦略を提案する。
次に,音声信号を分解表現から効果的に再構成できるピッチと持続時間予測器を用いた合成モデルを開発した。
提案手法では,話者の類似性,理解性,自然性を評価する指標を用いて,ゼロショット音声変換を行うことができる。
対象とする話者に対してわずか10秒のデータを使用すると,音声スワップを行うことができ,視聴覚話者では5.5%,未認識話者では8.4%の話者検証を行うことができる。
関連論文リスト
- Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
本稿では,複数の改良を加えた多言語音声認識モデルを提案する。
我々は、6つの異なる言語に対する音声視覚訓練データの量を増やし、重複しない多言語データセットの自動書き起こしを生成する。
提案モデルでは, LRS3データセット上での新たな最先端性能を実現し, WERは0.8%に達した。
論文 参考訳(メタデータ) (2024-03-14T01:16:32Z) - SelfVC: Voice Conversion With Iterative Refinement using Self Transformations [42.97689861071184]
SelfVCは、自己合成例で音声変換モデルを改善するためのトレーニング戦略である。
本研究では,音声信号とSSL表現から韻律情報を導出する手法を開発し,合成モデルにおける予測サブモジュールの訓練を行う。
我々のフレームワークはテキストを使わずに訓練され、音声の自然性、話者の類似性、合成音声のインテリジェンス性を評価するため、ゼロショット音声変換を実現する。
論文 参考訳(メタデータ) (2023-10-14T19:51:17Z) - Disentangling Voice and Content with Self-Supervision for Speaker
Recognition [57.446013973449645]
本稿では,音声における話者の特性と内容の変動を同時にモデル化するアンタングル化フレームワークを提案する。
実験はVoxCelebとSITWのデータセットで実施され、EERとminDCFの平均減少率は9.56%と8.24%である。
論文 参考訳(メタデータ) (2023-10-02T12:02:07Z) - Zero-shot personalized lip-to-speech synthesis with face image based
voice control [41.17483247506426]
顔画像から対応する音声を予測するLip-to-Speech(Lip2Speech)合成は、様々なモデルや訓練戦略で大きく進歩している。
顔画像が話者の身元を制御するゼロショットパーソナライズされたLip2Speech合成法を提案する。
論文 参考訳(メタデータ) (2023-05-09T02:37:29Z) - Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
提案手法の新たなポイントは、大量のデータで訓練された音声表現から組込みベクトルを得るためにSSLモデルを直接利用することである。
この不整合埋め込みにより、未知話者の再生性能が向上し、異なる音声によるリズム伝達が実現される。
論文 参考訳(メタデータ) (2023-04-24T10:15:58Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
VATLM (Visual-Audio-Text Language Model) を用いたクロスモーダル表現学習フレームワークを提案する。
提案したVATLMは、モダリティに依存しない情報をモデル化するために、統一されたバックボーンネットワークを使用する。
これら3つのモダリティを1つの共有セマンティック空間に統合するために、VATLMは統一トークンのマスク付き予測タスクで最適化される。
論文 参考訳(メタデータ) (2022-11-21T09:10:10Z) - ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual
Multi-Speaker Text-to-Speech [58.93395189153713]
言語間複数話者音声合成タスクの事前学習法を拡張した。
本稿では,スペクトルと音素をランダムにマスキングする,音声・テキスト共同事前学習フレームワークを提案する。
本モデルは,話者埋め込み型マルチスピーカTS法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-07T13:35:16Z) - Cross-lingual Text-To-Speech with Flow-based Voice Conversion for
Improved Pronunciation [11.336431583289382]
本稿では,エンドツーエンドの言語間テキスト合成手法を提案する。
本来の話者の言語によらず、対象言語の発音を維持することを目的としている。
論文 参考訳(メタデータ) (2022-10-31T12:44:53Z) - AdaSpeech 4: Adaptive Text to Speech in Zero-Shot Scenarios [143.47967241972995]
高品質音声合成のためのゼロショット適応型TSシステムであるAdaSpeech 4を開発した。
話者特性を体系的にモデル化し、新しい話者の一般化を改善する。
微調整なしでは、AdaSpeech 4は複数のデータセットのベースラインよりも声質と類似性が向上する。
論文 参考訳(メタデータ) (2022-04-01T13:47:44Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
ワンショット音声変換は、音声表現のアンタングルメントによって効果的に実現できる。
コンテンツエンコーディングにはベクトル量子化(VQ)を使用し、トレーニング中に相互情報(MI)を相関指標として導入する。
実験結果は,提案手法が効果的に非絡み合った音声表現を学習する際の優位性を反映している。
論文 参考訳(メタデータ) (2021-06-18T13:50:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。