Towards Infield Navigation: leveraging simulated data for crop row
detection
- URL: http://arxiv.org/abs/2204.01811v1
- Date: Mon, 4 Apr 2022 19:28:30 GMT
- Title: Towards Infield Navigation: leveraging simulated data for crop row
detection
- Authors: Rajitha de Silva, Grzegorz Cielniak, Junfeng Gao
- Abstract summary: We suggest the utilization of small real-world datasets along with additional data generated by simulations to yield similar crop row detection performance as that of a model trained with a large real world dataset.
Our method could reach the performance of a deep learning based crop row detection model trained with real-world data by using 60% less labelled real-world data.
- Score: 6.088167023055281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agricultural datasets for crop row detection are often bound by their limited
number of images. This restricts the researchers from developing deep learning
based models for precision agricultural tasks involving crop row detection. We
suggest the utilization of small real-world datasets along with additional data
generated by simulations to yield similar crop row detection performance as
that of a model trained with a large real world dataset. Our method could reach
the performance of a deep learning based crop row detection model trained with
real-world data by using 60% less labelled real-world data. Our model performed
well against field variations such as shadows, sunlight and grow stages. We
introduce an automated pipeline to generate labelled images for crop row
detection in simulation domain. An extensive comparison is done to analyze the
contribution of simulated data towards reaching robust crop row detection in
various real-world field scenarios.
Related papers
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.
The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.
Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - LAESI: Leaf Area Estimation with Synthetic Imagery [13.145253458335464]
We introduce LAESI, a Synthetic Leaf dataset of 100,000 synthetic leaf images on millimeter paper.
This dataset provides a resource for leaf morphology analysis aimed at beech and oak leaves.
We evaluate the applicability of the dataset by training machine learning models for leaf surface area prediction and semantic segmentation.
arXiv Detail & Related papers (2024-03-31T07:56:07Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Modified CycleGAN for the synthesization of samples for wheat head
segmentation [0.09999629695552192]
In the absence of an annotated dataset, synthetic data can be used for model development.
We develop a realistic annotated synthetic dataset for wheat head segmentation.
The resulting model achieved a Dice score of 83.4% on an internal dataset and 83.6% on two external Global Wheat Head Detection datasets.
arXiv Detail & Related papers (2024-02-23T06:42:58Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Deep learning-based Crop Row Detection for Infield Navigation of
Agri-Robots [10.386591972977207]
This paper presents a robust crop row detection algorithm that withstands field variations using inexpensive cameras.
A dataset of sugar beet images was created representing 11 field variations comprised of multiple grow stages, light levels, varying weed densities, curved crop rows and discontinuous crop rows.
Our algorithm demonstrated robust vision-based crop row detection in challenging field conditions outperforming the baseline.
arXiv Detail & Related papers (2022-09-09T12:47:24Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Towards agricultural autonomy: crop row detection under varying field
conditions using deep learning [4.252146169134215]
This paper presents a novel metric to evaluate the robustness of deep learning based semantic segmentation approaches for crop row detection.
A dataset with ten main categories encountered under various field conditions was used for testing.
The effect on these conditions on the angular accuracy of crop row detection was compared.
arXiv Detail & Related papers (2021-09-16T23:12:08Z) - Strawberry Detection using Mixed Training on Simulated and Real Data [7.762964039682184]
We consider training on mixed datasets with real and simulated data for strawberry detection in real images.
Our results show that using the real dataset augmented by the simulated dataset resulted in slightly higher accuracy.
arXiv Detail & Related papers (2020-08-24T07:37:12Z) - Deep Traffic Sign Detection and Recognition Without Target Domain Real
Images [52.079665469286496]
We propose a novel database generation method that requires no real image from the target-domain, and (ii) templates of the traffic signs.
The method does not aim at overcoming the training with real data, but to be a compatible alternative when the real data is not available.
On large data sets, training with a fully synthetic data set almost matches the performance of training with a real one.
arXiv Detail & Related papers (2020-07-30T21:06:47Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
We show how to search for feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras.
A practical 3-stage transferable active grasping pipeline is developed, that is adaptive to unseen clutter scenes.
In our pipeline, we propose a novel mask-guided reward to overcome the sparse reward issue in grasping and ensure category-irrelevant behavior.
arXiv Detail & Related papers (2020-04-28T08:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.