論文の概要: PaLM: Scaling Language Modeling with Pathways
- arxiv url: http://arxiv.org/abs/2204.02311v1
- Date: Tue, 5 Apr 2022 16:11:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-06 14:14:50.416269
- Title: PaLM: Scaling Language Modeling with Pathways
- Title(参考訳): PaLM: パスによる言語モデリングのスケールアップ
- Authors: Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury,
Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David
Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan
Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan
Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, Noah Fiedel
- Abstract要約: 我々は,パスウェイズ言語モデル PaLM と呼ばれるトランスフォーマー言語モデルを用いて,540ビリオンのパラメータを訓練した。
我々はPathwaysという新しいMLシステムを用いて,6144 TPU v4チップ上でPaLMをトレーニングした。
数百の言語理解および生成ベンチマーク上で、最先端の数発の学習結果を達成し、スケーリングの継続的なメリットを実証する。
- 参考スコア(独自算出の注目度): 180.69584031908113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models have been shown to achieve remarkable performance
across a variety of natural language tasks using few-shot learning, which
drastically reduces the number of task-specific training examples needed to
adapt the model to a particular application. To further our understanding of
the impact of scale on few-shot learning, we trained a 540-billion parameter,
densely activated, Transformer language model, which we call Pathways Language
Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML
system which enables highly efficient training across multiple TPU Pods. We
demonstrate continued benefits of scaling by achieving state-of-the-art
few-shot learning results on hundreds of language understanding and generation
benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough
performance, outperforming the finetuned state-of-the-art on a suite of
multi-step reasoning tasks, and outperforming average human performance on the
recently released BIG-bench benchmark. A significant number of BIG-bench tasks
showed discontinuous improvements from model scale, meaning that performance
steeply increased as we scaled to our largest model. PaLM also has strong
capabilities in multilingual tasks and source code generation, which we
demonstrate on a wide array of benchmarks. We additionally provide a
comprehensive analysis on bias and toxicity, and study the extent of training
data memorization with respect to model scale. Finally, we discuss the ethical
considerations related to large language models and discuss potential
mitigation strategies.
- Abstract(参考訳): 大規模な言語モデルでは、わずかな学習でさまざまな自然言語タスクで顕著なパフォーマンスを実現することが示されており、特定のアプリケーションにモデルを適用するのに必要なタスク固有のトレーニング例の数を劇的に削減している。
そこで我々は,Pathways Language Model PaLM(パスウェイズ言語モデルPaLM)と呼ばれる,高密度に活性化されたトランスフォーマー言語モデルである540ビリオンパラメータを訓練した。
我々はPathwaysという新しいMLシステムを用いて,6144 TPU v4チップ上でPaLMをトレーニングした。
数百の言語理解および生成ベンチマーク上で、最先端の数発の学習結果を達成し、スケーリングの継続的なメリットを示す。
これらのタスクで、palm 540bは画期的なパフォーマンスを達成し、マルチステップ推論タスクのスイートで最先端を上回り、最近リリースされたbig-benchベンチマークで平均的なヒューマンパフォーマンスを上回った。
かなりの数のBIG-benchタスクでは、モデルスケールから不連続な改善が見られたため、我々の最大のモデルにスケールするにつれて、性能が急激に向上した。
PaLMはまた、多言語タスクやソースコード生成において強力な能力を持ち、幅広いベンチマークで示しています。
さらに,バイアスと毒性に関する総合的な分析を行い,モデルスケールに関するデータ記憶の訓練の程度について検討した。
最後に,大規模言語モデルに関する倫理的考察を議論し,潜在的な緩和戦略について論じる。
関連論文リスト
- Towards Multi-Modal Mastery: A 4.5B Parameter Truly Multi-Modal Small Language Model [0.0]
本稿では,複数入力と出力のモダリティを扱える新しい4.5Bパラメータ小言語モデルを提案する。
モデルのサイズは小さいが、様々なタスクにおける最先端のパフォーマンスをほぼ達成している。
論文 参考訳(メタデータ) (2024-11-08T17:15:17Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
論文 参考訳(メタデータ) (2024-07-28T06:10:47Z) - Super Tiny Language Models [3.8353434814956517]
本稿では,スーパーティニー言語モデル(STLM)に着目した一連の研究成果を紹介する。
我々は,プーリング機構によるバイトレベルのトークン化,ウェイトタイリング,効率的なトレーニング戦略など,革新的な手法を探求する。
我々の最終的な目標は、広範囲のアプリケーションに対して、高性能な言語モデルをよりアクセスしやすく、実用的なものにすることです。
論文 参考訳(メタデータ) (2024-05-23T04:12:49Z) - Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
大規模言語モデル(LLM)は近年,多種多様な言語関連タスクに多大な影響を与えている。
本稿では,複数のLLMを比較した機械翻訳タスクに特化して,コード切替タスクについて広範な研究を行う。
以上の結果から,LLMは特定のタスクに有望な結果をもたらすにもかかわらず,機械翻訳タスクにおける多言語大言語モデルよりも比較的少ない複雑性を持つモデルの方が優れていることが示唆された。
論文 参考訳(メタデータ) (2023-12-20T16:40:33Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
多言語自己回帰モデルにおけるパラメータ効率細調整(PEFT)と言語間タスクの相互作用について検討する。
高速チューニングは、微調整よりも低リソース言語の性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-14T00:43:33Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Multi Task Learning For Zero Shot Performance Prediction of Multilingual
Models [12.759281077118567]
多言語トランスフォーマーに基づく言語モデルは、言語間のゼロショット転送において驚くほど効果的であることが観察されている。
我々は,タスク上のゼロショット性能をマルチタスク学習問題としてモデル化することにより,タスク上のゼロショット性能を予測するための既存の手法を構築した。
論文 参考訳(メタデータ) (2022-05-12T14:47:03Z) - Scaling Language Models: Methods, Analysis & Insights from Training
Gopher [83.98181046650664]
本稿では,トランスフォーマーに基づく言語モデルの性能を,幅広いモデルスケールで解析する。
スケールからのゲインは、理解、事実確認、有害言語の同定などにおいて最大である。
我々は、AIの安全性と下流の害の軽減に対する言語モデルの適用について論じる。
論文 参考訳(メタデータ) (2021-12-08T19:41:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。