論文の概要: Solving integer multi-objective optimization problems using TOPSIS,
Differential Evolution and Tabu Search
- arxiv url: http://arxiv.org/abs/2204.02522v1
- Date: Tue, 5 Apr 2022 23:59:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-18 05:18:48.179523
- Title: Solving integer multi-objective optimization problems using TOPSIS,
Differential Evolution and Tabu Search
- Title(参考訳): TOPSIS, Differential Evolution, Tabu Search を用いた整数多目的最適化問題の解法
- Authors: Renato A. Krohling and Erick R. F. A. Schneider
- Abstract要約: 本稿では,非線形整数多目的最適化問題の解法を提案する。
第一に、問題は理想解(TOPSIS)に類似した順序選好法を用いて定式化される。
次に、その3つのバージョン(標準DE、DEGL、DEGL)における微分進化(DE)アルゴリズムが、DEベストとDEGLとして使用される。
DEアルゴリズムで見つかる解は連続であるため、最適化プロセス中に整数解を見つけるためにTabu Search (TS)アルゴリズムが使用される。
- 参考スコア(独自算出の注目度): 4.213427823201119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a method to solve non-linear integer multiobjective
optimization problems. First the problem is formulated using the Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS). Next, the
Differential Evolution (DE) algorithm in its three versions (standard DE, DE
best and DEGL) are used as optimizer. Since the solutions found by the DE
algorithms are continuous, the Tabu Search (TS) algorithm is employed to find
integer solutions during the optimization process. Experimental results show
the effectiveness of the proposed method.
- Abstract(参考訳): 本稿では,非線形整数多目的最適化問題の解法を提案する。
まず、理想解(TOPSIS)と類似性による順序選好手法を用いて、この問題を定式化する。
次に、その3つのバージョン(標準de、de best、degl)における微分進化(de)アルゴリズムを最適化器として使用する。
DEアルゴリズムで見つかる解は連続であるため、最適化プロセス中に整数解を見つけるためにTabu Search (TS)アルゴリズムが使用される。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
厳密なランタイム制約の下で、同様の最適化問題を順次解決することは、多くのアプリケーションにとって不可欠である。
本稿では,問題インスタンスを定義するパラメータが与えられた初期解を多種多様に予測する学習を提案する。
提案手法は,すべての評価設定において有意かつ一貫した改善を実現し,必要な初期解の数に応じて効率よくスケールできることを実証した。
論文 参考訳(メタデータ) (2024-11-04T15:17:19Z) - Effective anytime algorithm for multiobjective combinatorial optimization problems [3.2061579211871383]
客観的な空間で十分に普及している効率的なソリューションのセットは、意思決定者に対して様々なソリューションを提供するのに好まれる。
本稿では,3つの新しいアイデアを組み合わせた多目的最適化のための新しい正確なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-06T11:53:44Z) - Dynamic Incremental Optimization for Best Subset Selection [15.8362578568708]
最良のサブセット選択は、多くの学習問題に対する金の標準と見なされている。
主問題構造と双対問題構造に基づいて,効率的な部分集合双対アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-04T02:26:40Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
現実の問題は、本質的には複数の最適値からなるマルチモーダルである。
古典的な勾配に基づく手法は、目的関数が不連続あるいは微分不可能な最適化問題に対して失敗する。
我々は,MMOPを解くために,拡張オポポジション微分進化(EODE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-23T16:18:27Z) - Best Subset Selection with Efficient Primal-Dual Algorithm [24.568094642425837]
多くの学習問題に対するベストサブセット選択は「ゴールドスタンダード」と見なされている。
本稿では,$ell$-regularized問題系の二重形式について検討する。
主問題構造と双対問題構造に基づく効率的な主対法が開発されている。
論文 参考訳(メタデータ) (2022-07-05T14:07:52Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
提案アルゴリズムは,実モデルのモデルによって定義される一連の代理問題の解法に基づく。
また,最適化ランドスケープのための最適なサロゲートモデルとナビゲーション戦略のメタ検索を行う。
論文 参考訳(メタデータ) (2021-03-19T11:18:03Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
複数の異なる損失を最小化しなければならない最適化問題を考える。
提案手法は、各イテレーションにおける降下方向を計算し、目的関数の相対的減少を等しく保証する。
論文 参考訳(メタデータ) (2020-07-14T09:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。