Entropy-Based Evolutionary Diversity Optimisation for the Traveling
Salesperson Problem
- URL: http://arxiv.org/abs/2104.13538v1
- Date: Wed, 28 Apr 2021 02:36:14 GMT
- Title: Entropy-Based Evolutionary Diversity Optimisation for the Traveling
Salesperson Problem
- Authors: Adel Nikfarjam, Jakob Bossek, Aneta Neumann, Frank Neumann
- Abstract summary: We employ a population diversity measure, called the high-order entropy measure, in an evolutionary algorithm to compute a diverse set of high-quality solutions for the Traveling Salesperson Problem.
We show significant improvements compared to a recently proposed edge-based diversity optimisation approach when working with a large population of solutions or long segments.
- Score: 11.590506672325668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computing diverse sets of high-quality solutions has gained increasing
attention among the evolutionary computation community in recent years. It
allows practitioners to choose from a set of high-quality alternatives. In this
paper, we employ a population diversity measure, called the high-order entropy
measure, in an evolutionary algorithm to compute a diverse set of high-quality
solutions for the Traveling Salesperson Problem. In contrast to previous
studies, our approach allows diversifying segments of tours containing several
edges based on the entropy measure. We examine the resulting evolutionary
diversity optimisation approach precisely in terms of the final set of
solutions and theoretical properties. Experimental results show significant
improvements compared to a recently proposed edge-based diversity optimisation
approach when working with a large population of solutions or long segments.
Related papers
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Computing High-Quality Solutions for the Patient Admission Scheduling
Problem using Evolutionary Diversity Optimisation [10.609857097723266]
We adapt the evolutionary diversity optimisation for a real-world problem, namely patient admission scheduling.
We introduce an evolutionary algorithm to achieve structural diversity in a set of solutions subjected to the quality of each solution.
arXiv Detail & Related papers (2022-07-28T14:26:45Z) - Co-Evolutionary Diversity Optimisation for the Traveling Thief Problem [11.590506672325668]
We introduce a co-evolutionary algorithm to simultaneously explore the two spaces for the multi-component traveling thief problem.
Results show the capability of the co-evolutionary algorithm to achieve significantly higher diversity compared to the baseline evolutionary diversity algorithms from the the literature.
arXiv Detail & Related papers (2022-07-28T12:02:15Z) - Coevolutionary Pareto Diversity Optimization [13.026567958569965]
We introduce a coevolutionary Pareto Diversity Optimization approach.
In particular, we show that the use of inter-population crossover further improves the diversity of the set of solutions.
arXiv Detail & Related papers (2022-04-12T00:52:13Z) - Evolutionary Diversity Optimisation for The Traveling Thief Problem [11.590506672325668]
We introduce a bi-level evolutionary algorithm to maximise the structural diversity of the set of solutions.
We empirically determine the best method to obtain diversity.
Our experimental results show a significant improvement of the QD approach in terms of structural diversity for most TTP benchmark instances.
arXiv Detail & Related papers (2022-04-06T10:13:55Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
We show that multiobjective optimization does not always produce much diversity, multimodal optimization produces higher fitness solutions, and quality diversity is not sensitive to genetic neutrality.
An autoencoder is used to discover phenotypic features automatically, producing an even more diverse solution set with quality diversity.
arXiv Detail & Related papers (2021-05-10T10:39:03Z) - Towards Multimodal Response Generation with Exemplar Augmentation and
Curriculum Optimization [73.45742420178196]
We propose a novel multimodal response generation framework with exemplar augmentation and curriculum optimization.
Our model achieves significant improvements compared to strong baselines in terms of diversity and relevance.
arXiv Detail & Related papers (2020-04-26T16:29:06Z) - Evolving Diverse Sets of Tours for the Travelling Salesperson Problem [14.171272631032522]
We study the impact of using different diversity measures for a given set of tours and the ability of evolutionary algorithms to obtain a diverse set of high quality solutions.
Our studies show that a large variety of diverse high quality tours can be achieved by using our approaches.
arXiv Detail & Related papers (2020-04-20T10:34:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.