Computing High-Quality Solutions for the Patient Admission Scheduling
Problem using Evolutionary Diversity Optimisation
- URL: http://arxiv.org/abs/2207.14112v1
- Date: Thu, 28 Jul 2022 14:26:45 GMT
- Title: Computing High-Quality Solutions for the Patient Admission Scheduling
Problem using Evolutionary Diversity Optimisation
- Authors: Adel Nikfarjam, Amirhossein Moosavi, Aneta Neumann, and Frank Neumann
- Abstract summary: We adapt the evolutionary diversity optimisation for a real-world problem, namely patient admission scheduling.
We introduce an evolutionary algorithm to achieve structural diversity in a set of solutions subjected to the quality of each solution.
- Score: 10.609857097723266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diversification in a set of solutions has become a hot research topic in the
evolutionary computation community. It has been proven beneficial for
optimisation problems in several ways, such as computing a diverse set of
high-quality solutions and obtaining robustness against imperfect modeling. For
the first time in the literature, we adapt the evolutionary diversity
optimisation for a real-world combinatorial problem, namely patient admission
scheduling. We introduce an evolutionary algorithm to achieve structural
diversity in a set of solutions subjected to the quality of each solution. We
also introduce a mutation operator biased towards diversity maximisation.
Finally, we demonstrate the importance of diversity for the aforementioned
problem through a simulation.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Evolutionary Multi-Objective Diversity Optimization [14.930208990741129]
We treat this problem as a bi-objective optimization problem, which is to obtain a range of quality-diversity trade-offs.
We present a suitable general implementation scheme that is compatible with existing evolutionary multi-objective search methods.
The resulting non-dominated populations exhibit rich qualitative features, giving insights into the optimization instances and the quality-diversity trade-offs they induce.
arXiv Detail & Related papers (2024-01-15T03:59:42Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Coevolutionary Pareto Diversity Optimization [13.026567958569965]
We introduce a coevolutionary Pareto Diversity Optimization approach.
In particular, we show that the use of inter-population crossover further improves the diversity of the set of solutions.
arXiv Detail & Related papers (2022-04-12T00:52:13Z) - Evolutionary Diversity Optimisation for The Traveling Thief Problem [11.590506672325668]
We introduce a bi-level evolutionary algorithm to maximise the structural diversity of the set of solutions.
We empirically determine the best method to obtain diversity.
Our experimental results show a significant improvement of the QD approach in terms of structural diversity for most TTP benchmark instances.
arXiv Detail & Related papers (2022-04-06T10:13:55Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
We show that multiobjective optimization does not always produce much diversity, multimodal optimization produces higher fitness solutions, and quality diversity is not sensitive to genetic neutrality.
An autoencoder is used to discover phenotypic features automatically, producing an even more diverse solution set with quality diversity.
arXiv Detail & Related papers (2021-05-10T10:39:03Z) - Entropy-Based Evolutionary Diversity Optimisation for the Traveling
Salesperson Problem [11.590506672325668]
We employ a population diversity measure, called the high-order entropy measure, in an evolutionary algorithm to compute a diverse set of high-quality solutions for the Traveling Salesperson Problem.
We show significant improvements compared to a recently proposed edge-based diversity optimisation approach when working with a large population of solutions or long segments.
arXiv Detail & Related papers (2021-04-28T02:36:14Z) - Computing Diverse Sets of Solutions for Monotone Submodular Optimisation
Problems [13.026567958569965]
This paper introduces approaches for computing diverse sets of high quality solutions for submodular optimisation problems.
We first present diversifying greedy sampling approaches and analyse them with respect to the diversity measured by entropy.
We then introduce an evolutionary diversity optimisation approach to further improve diversity of the set of solutions.
arXiv Detail & Related papers (2020-10-22T07:11:34Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.