MTI-Net: A Multi-Target Speech Intelligibility Prediction Model
- URL: http://arxiv.org/abs/2204.03310v1
- Date: Thu, 7 Apr 2022 09:17:04 GMT
- Title: MTI-Net: A Multi-Target Speech Intelligibility Prediction Model
- Authors: Ryandhimas E. Zezario, Szu-wei Fu, Fei Chen, Chiou-Shann Fuh, Hsin-Min
Wang, Yu Tsao
- Abstract summary: This study proposes a multi-task speech intelligibility prediction model, called MTI-Net, for simultaneously predicting human and machine intelligibility measures.
Specifically, given a speech utterance, MTI-Net is designed to predict subjective listening test results and word error rate (WER) scores.
- Score: 25.124218779681875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning (DL)-based non-intrusive speech assessment models
have attracted great attention. Many studies report that these DL-based models
yield satisfactory assessment performance and good flexibility, but their
performance in unseen environments remains a challenge. Furthermore, compared
to quality scores, fewer studies elaborate deep learning models to estimate
intelligibility scores. This study proposes a multi-task speech intelligibility
prediction model, called MTI-Net, for simultaneously predicting human and
machine intelligibility measures. Specifically, given a speech utterance,
MTI-Net is designed to predict subjective listening test results and word error
rate (WER) scores. We also investigate several methods that can improve the
prediction performance of MTI-Net. First, we compare different features
(including low-level features and embeddings from self-supervised learning
(SSL) models) and prediction targets of MTI-Net. Second, we explore the effect
of transfer learning and multi-tasking learning on training MTI-Net. Finally,
we examine the potential advantages of fine-tuning SSL embeddings. Experimental
results demonstrate the effectiveness of using cross-domain features,
multi-task learning, and fine-tuning SSL embeddings. Furthermore, it is
confirmed that the intelligibility and WER scores predicted by MTI-Net are
highly correlated with the ground-truth scores.
Related papers
- On Learnable Parameters of Optimal and Suboptimal Deep Learning Models [2.889799048595314]
We study the structural and operational aspects of deep learning models.
Our research focuses on the nuances of learnable parameters (weight) statistics, distribution, node interaction, and visualization.
arXiv Detail & Related papers (2024-08-21T15:50:37Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
This study aims to evaluate the performance of Multimodal Large Language Models (MLLMs) on the VALSE benchmark.
We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets.
arXiv Detail & Related papers (2024-07-17T11:26:47Z) - Test-Time Training on Graphs with Large Language Models (LLMs) [68.375487369596]
Test-Time Training (TTT) has been proposed as a promising approach to train Graph Neural Networks (GNNs)
Inspired by the great annotation ability of Large Language Models (LLMs) on Text-Attributed Graphs (TAGs), we propose to enhance the test-time training on graphs with LLMs as annotators.
A two-stage training strategy is designed to tailor the test-time model with the limited and noisy labels.
arXiv Detail & Related papers (2024-04-21T08:20:02Z) - Multi-Task Pseudo-Label Learning for Non-Intrusive Speech Quality
Assessment Model [28.32514067707762]
This study proposes a multi-task pseudo-label learning (MPL)-based non-intrusive speech quality assessment model called MTQ-Net.
MPL consists of two stages: obtaining pseudo-label scores from a pretrained model and performing multi-task learning.
The MTQ-Net with the MPL approach exhibits higher overall predictive power compared to other SSL-based speech assessment models.
arXiv Detail & Related papers (2023-08-18T02:36:21Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Cross-Task Consistency Learning Framework for Multi-Task Learning [9.991706230252708]
We propose a new learning framework for 2-task MTL problem.
We define two new loss terms inspired by cycle-consistency loss and contrastive learning.
We theoretically prove that both losses help the model learn more efficiently and that cross-task consistency loss is better in terms of alignment with the straight-forward predictions.
arXiv Detail & Related papers (2021-11-28T11:55:19Z) - Deep Learning-based Non-Intrusive Multi-Objective Speech Assessment
Model with Cross-Domain Features [30.57631206882462]
The MOSA-Net is designed to estimate speech quality, intelligibility, and distortion assessment scores based on a test speech signal as input.
We show that the MOSA-Net can precisely predict perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI), and speech distortion index (BLS) scores when tested on both noisy and enhanced speech utterances.
arXiv Detail & Related papers (2021-11-03T17:30:43Z) - LDNet: Unified Listener Dependent Modeling in MOS Prediction for
Synthetic Speech [67.88748572167309]
We present LDNet, a unified framework for mean opinion score (MOS) prediction.
We propose two inference methods that provide more stable results and efficient computation.
arXiv Detail & Related papers (2021-10-18T08:52:31Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.