論文の概要: Inference over radiative transfer models using variational and
expectation maximization methods
- arxiv url: http://arxiv.org/abs/2204.03346v1
- Date: Thu, 7 Apr 2022 10:33:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-09 00:19:16.595102
- Title: Inference over radiative transfer models using variational and
expectation maximization methods
- Title(参考訳): 変分・期待最大化法による放射伝達モデル上の推定
- Authors: Daniel Heestermans Svendsen, Daniel Hern\'andez-Lobato, Luca Martino,
Valero Laparra, Alvaro Moreno, Gustau Camps-Valls
- Abstract要約: 本稿では,生物物理パラメータの点推定だけでなく,その共同分布を推定するための2つの計算手法を提案する。
そのうちの1つは変分オートエンコーダアプローチに基づいており、もう1つはモンテカルロ予想最大化スキームに基づいている。
本研究では,地球生物圏の定量化のための3つの重要な生体物理パラメータの分布をモデル化し,推定するための2つの手法の性能解析を行った。
- 参考スコア(独自算出の注目度): 9.73020420215473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Earth observation from satellites offers the possibility to monitor our
planet with unprecedented accuracy. Radiative transfer models (RTMs) encode the
energy transfer through the atmosphere, and are used to model and understand
the Earth system, as well as to estimate the parameters that describe the
status of the Earth from satellite observations by inverse modeling. However,
performing inference over such simulators is a challenging problem. RTMs are
nonlinear, non-differentiable and computationally costly codes, which adds a
high level of difficulty in inference. In this paper, we introduce two
computational techniques to infer not only point estimates of biophysical
parameters but also their joint distribution. One of them is based on a
variational autoencoder approach and the second one is based on a Monte Carlo
Expectation Maximization (MCEM) scheme. We compare and discuss benefits and
drawbacks of each approach. We also provide numerical comparisons in synthetic
simulations and the real PROSAIL model, a popular RTM that combines land
vegetation leaf and canopy modeling. We analyze the performance of the two
approaches for modeling and inferring the distribution of three key biophysical
parameters for quantifying the terrestrial biosphere.
- Abstract(参考訳): 衛星からの地球観測により、地球を前例のない精度で観測することができる。
放射移動モデル(RTM)は大気中のエネルギー移動を符号化し、地球系をモデル化し理解するために使われ、また逆モデリングによって衛星観測から地球の状態を記述するパラメータを推定するために用いられる。
しかし,このようなシミュレータ上での推論は難しい課題である。
RTMは非線形で微分不可能で計算コストのかかる符号であり、推論の難易度が高い。
本稿では,生物物理パラメータの点推定だけでなく,その共同分布を推定する2つの計算手法を提案する。
そのうちの1つは変分オートエンコーダ法に基づいており、もう1つはモンテカルロ予測最大化法(MCEM)に基づくものである。
各アプローチのメリットと欠点を比較して議論する。
また,土地植生の葉とキャノピーモデルを組み合わせたrtmであるreal prosailモデルと合成シミュレーションの数値比較を行った。
本研究では,地球生物圏の定量化のための3つの重要な生体物理パラメータの分布をモデル化し,推定するための2つの手法の性能解析を行った。
関連論文リスト
- Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
地表面プロセスのシミュレーションによる実験研究の高速化における3つの代理モデルの効率性を評価する。
以上の結果から, LSTMネットワークは, 予測期間を経た平均モデル全体の精度は高いが, 慎重に調整した場合は, 大陸の長距離予測に優れることがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:26:05Z) - Diffusion-HMC: Parameter Inference with Diffusion Model driven Hamiltonian Monte Carlo [2.048226951354646]
この研究は、単一拡散生成モデルを用いて、観測された天体物理学分野の予測を理論から生成し、これらの予測を用いた観測から物理的モデルを制約する、相互に繋がった目的に対処する。
拡散生成モデルの近似的近似性を利用して、ハミルトニアンモンテカルロ法を用いて、与えられたテスト画像の宇宙論的パラメータの後方をサンプリングすることで、宇宙論の厳密な制約を導出する。
論文 参考訳(メタデータ) (2024-05-08T17:59:03Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
本稿では,エネルギー収支モデルの物理温度応答方程式を満たすデータ駆動エミュレータであるFaIRGPを紹介する。
本稿では,FaIRGPを用いて大気上層放射力の推定値を得る方法について述べる。
この研究が、気候エミュレーションにおけるデータ駆動手法の採用の拡大に寄与することを期待している。
論文 参考訳(メタデータ) (2023-07-14T08:43:36Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
パラメトリックダウンコンバージョンによって生成される絡み合ったツインビームは、画像指向アプリケーションで好まれるソースである。
本研究では,時間消費数値シミュレーションと非現実的な平面波ポンプ理論のギャップを埋めることを目的とした半解析モデルを提案する。
論文 参考訳(メタデータ) (2023-01-18T11:29:49Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Latent Space Model for Higher-order Networks and Generalized Tensor
Decomposition [18.07071669486882]
我々は、複雑な高次ネットワーク相互作用を研究するために、一般的な潜在空間モデルとして定式化された統一フレームワークを導入する。
一般化された多線形カーネルをリンク関数として、潜伏位置と観測データとの関係を定式化する。
本手法が合成データに与える影響を実証する。
論文 参考訳(メタデータ) (2021-06-30T13:11:17Z) - Integrating Domain Knowledge in Data-driven Earth Observation with
Process Convolutions [13.13700072257046]
両アプローチを組み合わせたハイブリッド学習方式は,これらの問題を効果的に解決できると論じる。
具体的には,時系列モデリングにおける遅延力モデル (LFM) と呼ばれるGP畳み込みモデルのクラスを提案する。
アクティブ(ASCAT)およびパッシブ(SMOS, AMSR2)マイクロ波衛星からの土壌水分の時系列を考察する。
論文 参考訳(メタデータ) (2021-04-16T14:30:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。