Machine Learning-Based Differential Diagnosis of Parkinson's Disease Using Kinematic Feature Extraction and Selection
- URL: http://arxiv.org/abs/2501.02014v1
- Date: Thu, 02 Jan 2025 14:43:39 GMT
- Title: Machine Learning-Based Differential Diagnosis of Parkinson's Disease Using Kinematic Feature Extraction and Selection
- Authors: Masahiro Matsumoto, Abu Saleh Musa Miah, Nobuyoshi Asai, Jungpil Shin,
- Abstract summary: Parkinson's disease (PD) is the second most common neurodegenerative disorder.
PD shares symptoms with other neurodegenerative diseases, such as progressive supranuclear palsy (PSP) and multiple system atrophy (MSA)
We propose a machine learning-based system for differential diagnosis of PD, PSP, MSA, and healthy controls.
- Score: 0.6249768559720121
- License:
- Abstract: Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by dopaminergic neuron loss and the accumulation of abnormal synuclein. PD presents both motor and non-motor symptoms that progressively impair daily functioning. The severity of these symptoms is typically assessed using the MDS-UPDRS rating scale, which is subjective and dependent on the physician's experience. Additionally, PD shares symptoms with other neurodegenerative diseases, such as progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), complicating accurate diagnosis. To address these diagnostic challenges, we propose a machine learning-based system for differential diagnosis of PD, PSP, MSA, and healthy controls (HC). This system utilizes a kinematic feature-based hierarchical feature extraction and selection approach. Initially, 18 kinematic features are extracted, including two newly proposed features: Thumb-to-index vector velocity and acceleration, which provide insights into motor control patterns. In addition, 41 statistical features were extracted here from each kinematic feature, including some new approaches such as Average Absolute Change, Rhythm, Amplitude, Frequency, Standard Deviation of Frequency, and Slope. Feature selection is performed using One-way ANOVA to rank features, followed by Sequential Forward Floating Selection (SFFS) to identify the most relevant ones, aiming to reduce the computational complexity. The final feature set is used for classification, achieving a classification accuracy of 66.67% for each dataset and 88.89% for each patient, with particularly high performance for the MSA and HC groups using the SVM algorithm. This system shows potential as a rapid and accurate diagnostic tool in clinical practice, though further data collection and refinement are needed to enhance its reliability.
Related papers
- Distinguishing Parkinson's Patients Using Voice-Based Feature Extraction and Classification [0.0]
This study focuses on differentiating individuals with Parkinson's disease from healthy controls through the extraction and classification of speech features.
The accuracy of our 3-layer artificial neural network architecture was also compared with classical machine learning algorithms.
arXiv Detail & Related papers (2025-01-24T10:44:16Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
This study explores the potential of vocal feature alterations in PD patients as a means of early disease prediction.
utilizing a variety of advanced machine-learning algorithms, including XGBoost, LightGBM, Bagging, AdaBoost, and Support Vector Machine.
LightGBM exhibited a remarkable sensitivity of 100% and specificity of 94.43%, surpassing other machine learning algorithms in accuracy and AUC scores.
arXiv Detail & Related papers (2023-11-09T15:21:10Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - Pose-based Tremor Classification for Parkinson's Disease Diagnosis from
Video [13.6403722052414]
Parkinson's disease (PD) is a progressive neurodegenerative disorder that results in a variety of motor dysfunction symptoms.
Parkinson's tremor is one of the most predominant symptoms of PD with strong generalizability.
We propose SPAPNet, which only requires consumer-grade non-intrusive video recording of camera-facing human movements as input to provide undiagnosed patients with low-cost PT classification results as a PD warning sign.
arXiv Detail & Related papers (2022-07-14T11:32:42Z) - Identification of Autism spectrum disorder based on a novel feature
selection method and Variational Autoencoder [7.0876609220947655]
Noninvasive brain imaging such as resting-state functional magnetic resonance imaging (rs-fMRI) provides a promising solution for the early diagnosis of Autism spectrum disorder (ASD)
This paper introduces a classification framework to aid ASD diagnosis based on rs-fMRI.
arXiv Detail & Related papers (2022-04-07T08:50:48Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Machine learning discrimination of Parkinson's Disease stages from
walker-mounted sensors data [0.0]
This study applies machine learning methods to discriminate six stages of Parkinson's Disease (PD) progression.
The data was acquired by low cost walker-mounted sensors in an experiment at a movement disorders clinic.
arXiv Detail & Related papers (2020-06-22T09:34:12Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.