論文の概要: Blockchain as an Enabler for Transfer Learning in Smart Environments
- arxiv url: http://arxiv.org/abs/2204.03959v2
- Date: Mon, 11 Apr 2022 00:32:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-12 11:38:02.127946
- Title: Blockchain as an Enabler for Transfer Learning in Smart Environments
- Title(参考訳): スマート環境におけるトランスファーラーニングのためのブロックチェーン
- Authors: Amin Anjomshoaa and Edward Curry
- Abstract要約: 機械学習モデルの共有と再利用は、ユーザのためのサービスの導入を促進する。
ブロックチェーンとナレッジグラフ技術に基づく分散適応型ソフトウェアフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.127183254738711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The knowledge, embodied in machine learning models for intelligent systems,
is commonly associated with time-consuming and costly processes such as
large-scale data collection, data labelling, network training, and fine-tuning
of models. Sharing and reuse of these elaborated models between intelligent
systems deployed in a different environment, which is known as transfer
learning, would facilitate the adoption of services for the users and
accelerates the uptake of intelligent systems in environments such as smart
building and smart city applications. In this context, the communication and
knowledge exchange between AI-enabled environments depend on a complicated
networks of systems, system of systems, digital assets, and their chain of
dependencies that hardly follows the centralized schema of traditional
information systems. Rather, it requires an adaptive decentralized system
architecture that is empowered by features such as data provenance, workflow
transparency, and validation of process participants. In this research, we
propose a decentralized and adaptive software framework based on blockchain and
knowledge graph technologies that supports the knowledge exchange and
interoperability between IoT-enabled environments, in a transparent and
trustworthy way.
- Abstract(参考訳): インテリジェントシステムのための機械学習モデルに具体化された知識は、大規模データ収集、データラベリング、ネットワークトレーニング、モデルの微調整といった、時間とコストのかかるプロセスと一般的に関連している。
トランスファーラーニングと呼ばれる別の環境にデプロイされたインテリジェントなシステム間で、これらの精巧なモデルの共有と再利用は、ユーザのためのサービスの採用を促進し、スマートビルディングやスマートシティアプリケーションといった環境におけるインテリジェントなシステムの取り込みを加速する。
この文脈では、AI対応環境間のコミュニケーションと知識交換は、システム、システムのシステム、デジタル資産、および従来の情報システムの集中型スキーマにほとんど従わない依存関係の連鎖の複雑なネットワークに依存する。
むしろ、データプロファイランス、ワークフローの透明性、プロセス参加者の検証といった機能によって強化された、適応的な分散システムアーキテクチャが必要です。
本研究では,IoT対応環境間の知識交換と相互運用性をサポートするブロックチェーンとナレッジグラフ技術に基づく分散適応型ソフトウェアフレームワークを,透過的で信頼性の高い方法で提案する。
関連論文リスト
- Swarm Learning: A Survey of Concepts, Applications, and Trends [3.55026004901472]
ディープラーニングモデルは、中央サーバ上の大規模なデータセットに依存しているため、プライバシとセキュリティの懸念を高めている。
Federated Learning (FL)は、汎用的で大規模な機械学習フレームワークを構築するための新しいアプローチを導入した。
Swarm Learning (SL) は Hewlett Packard Enterprise (HPE) と共同で提案されている。
SLは、セキュアでスケーラブルでプライベートなデータ管理にブロックチェーン技術を活用する、分散機械学習フレームワークである。
論文 参考訳(メタデータ) (2024-05-01T14:59:24Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
インターネット・オブ・センセーズ(IoS)は、すべてのヒト受容体に対する欠陥のないテレプレゼンススタイルのコミュニケーションを約束する。
我々は,新たなセマンティックコミュニケーションと人工知能(AI)/機械学習(ML)パラダイムがIoSユースケースの要件を満たす方法について詳しく述べる。
論文 参考訳(メタデータ) (2022-12-21T03:37:38Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks [17.071452978622123]
フェデレートラーニング(FL)は近年,サイバー攻撃検知システムにおいて有効なアプローチとなっている。
FLは学習効率を改善し、通信オーバーヘッドを減らし、サイバー攻撃検知システムのプライバシーを高める。
このようなシステムにおけるFLの実装上の課題は、ラベル付きデータの可用性の欠如と、異なるIoTネットワークにおけるデータ機能の相違である。
論文 参考訳(メタデータ) (2021-12-02T05:26:29Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - Making a Case for Federated Learning in the Internet of Vehicles and
Intelligent Transportation Systems [6.699060157800401]
車両のインターネット(IoV)はインテリジェント交通システム(ITS)に変換されます。
これらの課題に対処するために,協調的分散知能技術である連合学習が提案されている。
多数のユースケースとメリットを備えたFederated Learningは、ITSの重要なイネーブラーであり、5Gおよびネットワークやアプリケーションを超えて広く実装される予定です。
論文 参考訳(メタデータ) (2021-02-19T20:07:17Z) - Adaptive Scheduling for Machine Learning Tasks over Networks [1.4271989597349055]
本論文では, 線形回帰タスクに資源を効率的に割り当てるアルゴリズムを, データのインフォマティビティ性を利用して検討する。
アルゴリズムは、信頼性の高い性能保証による学習タスクの適応スケジューリングを可能にする。
論文 参考訳(メタデータ) (2021-01-25T10:59:00Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。