Blockchain as an Enabler for Transfer Learning in Smart Environments
- URL: http://arxiv.org/abs/2204.03959v2
- Date: Mon, 11 Apr 2022 00:32:43 GMT
- Title: Blockchain as an Enabler for Transfer Learning in Smart Environments
- Authors: Amin Anjomshoaa and Edward Curry
- Abstract summary: Sharing and reuse of machine learning models would facilitate the adoption of services for the users.
We propose a decentralized and adaptive software framework based on blockchain and knowledge graph technologies.
- Score: 5.127183254738711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The knowledge, embodied in machine learning models for intelligent systems,
is commonly associated with time-consuming and costly processes such as
large-scale data collection, data labelling, network training, and fine-tuning
of models. Sharing and reuse of these elaborated models between intelligent
systems deployed in a different environment, which is known as transfer
learning, would facilitate the adoption of services for the users and
accelerates the uptake of intelligent systems in environments such as smart
building and smart city applications. In this context, the communication and
knowledge exchange between AI-enabled environments depend on a complicated
networks of systems, system of systems, digital assets, and their chain of
dependencies that hardly follows the centralized schema of traditional
information systems. Rather, it requires an adaptive decentralized system
architecture that is empowered by features such as data provenance, workflow
transparency, and validation of process participants. In this research, we
propose a decentralized and adaptive software framework based on blockchain and
knowledge graph technologies that supports the knowledge exchange and
interoperability between IoT-enabled environments, in a transparent and
trustworthy way.
Related papers
- Swarm Learning: A Survey of Concepts, Applications, and Trends [3.55026004901472]
Deep learning models have raised privacy and security concerns due to their reliance on large datasets on central servers.
Federated learning (FL) has introduced a novel approach to building a versatile, large-scale machine learning framework.
Swarm learning (SL) has been proposed in collaboration with Hewlett Packard Enterprise (HPE)
SL represents a decentralized machine learning framework that leverages blockchain technology for secure, scalable, and private data management.
arXiv Detail & Related papers (2024-05-01T14:59:24Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks [17.071452978622123]
Federated Learning (FL) has recently become an effective approach for cyberattack detection systems.
FL can improve learning efficiency, reduce communication overheads and enhance privacy for cyberattack detection systems.
Challenges in implementation of FL in such systems include unavailability of labeled data and dissimilarity of data features in different IoT networks.
arXiv Detail & Related papers (2021-12-02T05:26:29Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Making a Case for Federated Learning in the Internet of Vehicles and
Intelligent Transportation Systems [6.699060157800401]
Internet of Vehicles (IoV) is transformed into an Intelligent Transportation System (ITS)
To address these challenges, Federated Learning, a collaborative and distributed intelligence technique, is suggested.
With a multitude of use cases and benefits, Federated Learning is a key enabler for ITS and is poised to achieve widespread implementation in 5G and beyond networks and applications.
arXiv Detail & Related papers (2021-02-19T20:07:17Z) - Adaptive Scheduling for Machine Learning Tasks over Networks [1.4271989597349055]
This paper examines algorithms for efficiently allocating resources to linear regression tasks by exploiting the informativeness of the data.
The algorithms developed enable adaptive scheduling of learning tasks with reliable performance guarantees.
arXiv Detail & Related papers (2021-01-25T10:59:00Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.