High-accuracy Hamiltonian learning via delocalized quantum state
evolutions
- URL: http://arxiv.org/abs/2204.03997v3
- Date: Thu, 19 Jan 2023 19:58:00 GMT
- Title: High-accuracy Hamiltonian learning via delocalized quantum state
evolutions
- Authors: Davide Rattacaso and Gianluca Passarelli and Procolo Lucignano
- Abstract summary: We show that the accuracy of the learning process is maximized for states that are delocalized in the Hamiltonian eigenbasis.
This implies that delocalization is a quantum resource for Hamiltonian learning, that can be exploited to select optimal initial states for learning algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning the unknown Hamiltonian governing the dynamics of a quantum
many-body system is a challenging task. In this manuscript, we propose a
possible strategy based on repeated measurements on a single time-dependent
state. We prove that the accuracy of the learning process is maximized for
states that are delocalized in the Hamiltonian eigenbasis. This implies that
delocalization is a quantum resource for Hamiltonian learning, that can be
exploited to select optimal initial states for learning algorithms. We
investigate the error scaling of our reconstruction with respect to the number
of measurements, and we provide examples of our learning algorithm on simulated
quantum systems.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Predicting Ground State Properties: Constant Sample Complexity and Deep Learning Algorithms [48.869199703062606]
A fundamental problem in quantum many-body physics is that of finding ground states of local Hamiltonians.
We introduce two approaches that achieve a constant sample complexity, independent of system size $n$, for learning ground state properties.
arXiv Detail & Related papers (2024-05-28T18:00:32Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Unified Quantum State Tomography and Hamiltonian Learning Using
Transformer Models: A Language-Translation-Like Approach for Quantum Systems [0.47831562043724657]
We introduce a new approach that employs the attention mechanism in transformer models to effectively merge quantum state tomography and Hamiltonian learning.
We demonstrate the effectiveness of our approach across various quantum systems, ranging from simple 2-qubit cases to more involved 2D antiferromagnetic Heisenberg structures.
arXiv Detail & Related papers (2023-04-24T11:20:44Z) - Learning ground states of gapped quantum Hamiltonians with Kernel
Methods [0.0]
We introduce a statistical learning approach that makes the optimization trivial by using kernel methods.
Our scheme is an approximate realization of the power method, where supervised learning is used to learn the next step of the power.
arXiv Detail & Related papers (2023-03-15T19:37:33Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Robust and Efficient Hamiltonian Learning [2.121963121603413]
We present a robust and efficient Hamiltonian learning method that circumvents limitations based on mild assumptions.
The proposed method can efficiently learn any Hamiltonian that is sparse on the Pauli basis using only short-time dynamics and local operations.
We numerically test the scaling and the estimation accuracy of the method for transverse field Ising Hamiltonian with random interaction strengths and molecular Hamiltonians.
arXiv Detail & Related papers (2022-01-01T13:48:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Iterative Quantum Assisted Eigensolver [0.0]
We provide a hybrid quantum-classical algorithm for approximating the ground state of a Hamiltonian.
Our algorithm builds on the powerful Krylov subspace method in a way that is suitable for current quantum computers.
arXiv Detail & Related papers (2020-10-12T12:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.