Markov categories, causal theories, and the do-calculus
- URL: http://arxiv.org/abs/2204.04821v1
- Date: Mon, 11 Apr 2022 01:27:41 GMT
- Title: Markov categories, causal theories, and the do-calculus
- Authors: Yimu Yin, Jiji Zhang
- Abstract summary: We give a category-theoretic treatment of causal models that formalizes the syntax for causal reasoning over a directed acyclic graph (DAG)
This framework enables us to define and study important concepts in causal reasoning from an abstract and "purely causal" point of view.
- Score: 7.061298918159947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give a category-theoretic treatment of causal models that formalizes the
syntax for causal reasoning over a directed acyclic graph (DAG) by associating
a free Markov category with the DAG in a canonical way. This framework enables
us to define and study important concepts in causal reasoning from an abstract
and "purely causal" point of view, such as causal independence/separation,
causal conditionals, and decomposition of intervention effects. Our results
regarding these concepts abstract away from the details of the commonly adopted
causal models such as (recursive) structural equation models or causal Bayesian
networks. They are therefore more widely applicable and in a way conceptually
clearer. Our results are also intimately related to Judea Pearl's celebrated
do-calculus, and yield a syntactic version of a core part of the calculus that
is inherited in all causal models. In particular, it induces a simpler and
specialized version of Pearl's do-calculus in the context of causal Bayesian
networks, which we show is as strong as the full version.
Related papers
- Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders [16.682775063684907]
We decompose the structure learning problem into inferring causal order and a parent set for each variable given a causal order.
Our method yields state-of-the-art in structure learning on simulated non-linear additive noise benchmarks with scale-free and Erdos-Renyi graph structures.
arXiv Detail & Related papers (2024-02-22T18:39:24Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - Axiomatization of Interventional Probability Distributions [4.02487511510606]
Causal intervention is axiomatized under the rules of do-calculus.
We show that under our axiomatizations, the intervened distributions are Markovian to the defined intervened causal graphs.
We also show that a large class of natural structural causal models satisfy the theory presented here.
arXiv Detail & Related papers (2023-05-08T06:07:42Z) - Causal models in string diagrams [0.0]
The framework of causal models provides a principled approach to causal reasoning, applied today across many scientific domains.
We present this framework in the language of string diagrams, interpreted formally using category theory.
We argue and demonstrate that causal reasoning according to the causal model framework is most naturally and intuitively done as diagrammatic reasoning.
arXiv Detail & Related papers (2023-04-15T21:54:48Z) - On The Universality of Diagrams for Causal Inference and The Causal
Reproducing Property [4.119151469153588]
We propose a framework based on category theory that defines the universal property that underlies causal inference.
We present two foundational results in universal causal inference.
arXiv Detail & Related papers (2022-07-06T18:54:15Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.