First- and second-order gradient couplings to NV centers engineered by
the geometric symmetry
- URL: http://arxiv.org/abs/2204.04835v2
- Date: Fri, 23 Sep 2022 12:32:11 GMT
- Title: First- and second-order gradient couplings to NV centers engineered by
the geometric symmetry
- Authors: Yuan Zhou, Shuang-Liang Yang, Dong-Yan Lv, Hai-Ming Huang, Xin-Ke Li,
Guang-Hui Wang, Chang-Sheng Hu
- Abstract summary: nanowires with different geometries can induce a tunable magnetic field gradient because of their geometric symmetries.
A straight nanowire can guarantee the Jaynes-Cummings (JC) spin-phonon interaction and may indicate a potential route towards the application on quantum measurement.
- Score: 21.439773541873535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The magnetic fields with the first- and second-order gradient are engineered
in several mechanically controlled hybrid systems. The current-carrying
nanowires with different geometries can induce a tunable magnetic field
gradient because of their geometric symmetries, and therefore develop various
couplings to nitrogen-vacancy (NV) centers. For instance, a straight nanowire
can guarantee the Jaynes-Cummings (JC) spin-phonon interaction and may indicate
a potential route towards the application on quantum measurement. Especially,
two parallel straight nanowires can develop the coherent down-conversion
spin-phonon interaction through a second-order gradient of the magnetic field,
and it can induce a bundle emission of the antibunched phonon pairs via an
entirely different magnetic mechanism. Maybe, this investigation is further
believed to support NV's future applications in the area of quantum
manipulation, quantum sensing, and precision measurement, etc.
Related papers
- Junction-free microwave two-mode radiation from a kinetic inductance
nanowire [0.3413711585591077]
We show the generation of two-mode squeezed states via four-wave-mixing in a superconducting nanowire resonator patterned from NbN.
Our microwave parametric sources based on kinetic inductance promise an expanded range of potential applications.
arXiv Detail & Related papers (2023-08-04T02:10:44Z) - Spin decoherence in VOPc@graphene nanoribbon complexes [5.691318972818067]
Carbon nanoribbon or nanographene qubit arrays can facilitate quantum-to-quantum transduction between light, charge, and spin.
We study spin decoherence due to coupling with a surrounding nuclear spin bath of an electronic molecular spin of a vanadyl phthalocyanine (VOPc) molecule integrated on an armchair-edged graphene nanoribbon (GNR)
We find that the decoherence time $T$ is anisotropic with respect to magnetic field orientation and determined only by nuclear spins on VOPc and GNR.
arXiv Detail & Related papers (2023-07-31T04:55:05Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Quantum phase transition in magnetic nanographenes on a lead
superconductor [21.166883497183687]
Quantum spins are proposed to host exotic interactions with superconductivity.
Magnetic nanographenes have been proven to host intrinsic quantum magnetism due to their negligible spin orbital coupling and crystal field splitting.
We fabricate three atomically precise nanographenes with the same magnetic ground state of spin S=1/2 on Pb (111) through engineering sublattice imbalance in graphene honeycomb lattice.
arXiv Detail & Related papers (2022-07-12T04:52:02Z) - Study of the transition from resonance to bound states in quantum dots
embedded on a nanowire using the $\mathbf{k}\cdot\mathbf{p}$ method [0.0]
We study the band structure of semiconductor nanowires with quantum dots embedded in them.
The band structure is calculated using the Rayleigh-Ritz variational method.
arXiv Detail & Related papers (2022-07-11T21:47:32Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Spin emitters beyond the point dipole approximation in nanomagnonic
cavities [0.0]
Control over transition rates between spin states of emitters is crucial in a variety of fields ranging from quantum information science to the nanochemistry of free radicals.
We present an approach to drive a both electric and magnetic dipole-forbidden transition of a spin emitter by placing it in a nanomagnonic cavity.
arXiv Detail & Related papers (2020-12-08T19:00:02Z) - Rectification induced by geometry in two-dimensional quantum spin
lattices [58.720142291102135]
We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
arXiv Detail & Related papers (2020-12-02T18:10:02Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.