論文の概要: From Modern CNNs to Vision Transformers: Assessing the Performance,
Robustness, and Classification Strategies of Deep Learning Models in
Histopathology
- arxiv url: http://arxiv.org/abs/2204.05044v2
- Date: Tue, 9 May 2023 15:05:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-11 17:55:37.321242
- Title: From Modern CNNs to Vision Transformers: Assessing the Performance,
Robustness, and Classification Strategies of Deep Learning Models in
Histopathology
- Title(参考訳): 現代CNNから視覚トランスフォーマーへ:病理学における深層学習モデルの性能・ロバスト性・分類戦略の評価
- Authors: Maximilian Springenberg, Annika Frommholz, Markus Wenzel, Eva Weicken,
Jackie Ma, and Nils Strodthoff
- Abstract要約: 我々は、広範囲の分類モデルを広範囲に評価する新しい手法を開発した。
広く使用されている5つの病理組織学的データセットを用いて,そのモデルを徹底的に検証した。
既存の解釈可能性手法を拡張し、モデルの分類戦略に関する洞察を体系的に明らかにする。
- 参考スコア(独自算出の注目度): 1.8947504307591034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While machine learning is currently transforming the field of histopathology,
the domain lacks a comprehensive evaluation of state-of-the-art models based on
essential but complementary quality requirements beyond a mere classification
accuracy. In order to fill this gap, we developed a new methodology to
extensively evaluate a wide range of classification models, including recent
vision transformers, and convolutional neural networks such as: ConvNeXt,
ResNet (BiT), Inception, ViT and Swin transformer, with and without supervised
or self-supervised pretraining. We thoroughly tested the models on five widely
used histopathology datasets containing whole slide images of breast, gastric,
and colorectal cancer and developed a novel approach using an image-to-image
translation model to assess the robustness of a cancer classification model
against stain variations. Further, we extended existing interpretability
methods to previously unstudied models and systematically reveal insights of
the models' classifications strategies that can be transferred to future model
architectures.
- Abstract(参考訳): 機械学習は現在、病理学の分野を変えつつあるが、この領域は、単なる分類精度を超えた、必須だが相補的な品質要件に基づく最先端モデルの包括的な評価を欠いている。
このギャップを埋めるために,最近のビジョントランスフォーマーや,convnext,resnet (bit),inception,vit,swinなどの畳み込みニューラルネットワークなど,教師付きあるいは自己教師付き事前学習の有無に関わらず,幅広い分類モデルを評価するための新しい手法を開発した。
胸部, 胃, 大腸癌のスライド画像全体を含む5種類の病理組織学的データセットを用いて, 画像から画像への翻訳モデルを用いて, 染色変化に対する癌分類モデルの堅牢性を評価する手法を開発した。
さらに,既存の解釈可能性手法を未熟なモデルに拡張し,今後のモデルアーキテクチャに移管可能なモデルの分類戦略の知見を体系的に明らかにする。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Prompt-Guided Adaptive Model Transformation for Whole Slide Image Classification [27.21493446754789]
スライド画像全体(WSI)を分類する一般的な方法として,Multiple Case Learning (MIL)が登場した。
本稿では,事前学習したモデルを病理組織学データの特定の特性にシームレスに適応するPrompt-Guided Adaptive Model Transformationフレームワークを提案する。
我々は,Camelyon16とTCGA-NSCLCの2つのデータセットに対するアプローチを厳格に評価し,様々なMILモデルに対して大幅な改善を行った。
論文 参考訳(メタデータ) (2024-03-19T08:23:12Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Domain-Specific Pre-training Improves Confidence in Whole Slide Image
Classification [15.354256205808273]
デジタル病理学では、全スライド画像(WSI)や病理像が用いられる。
WSIは、臨床診断のためのディープラーニングモデルに大きな課題を提起する。
論文 参考訳(メタデータ) (2023-02-20T08:42:06Z) - Unified Framework for Histopathology Image Augmentation and Classification via Generative Models [6.404713841079193]
本稿では,データ生成とモデルトレーニングの段階を統一プロセスに統合する,革新的な統一フレームワークを提案する。
提案手法では、画像合成と分類の両方を同時に扱うために、純粋視覚変換器(ViT)ベースの条件付き生成適応ネットワーク(cGAN)モデルを用いる。
本実験により,我々の統合合成増強フレームワークは,病理組織像分類モデルの性能を一貫して向上させることが示された。
論文 参考訳(メタデータ) (2022-12-20T03:40:44Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Class-Aware Generative Adversarial Transformers for Medical Image
Segmentation [39.14169989603906]
医用画像セグメンテーションのための新規な生成逆変換器CA-GANformerを提案する。
まず、ピラミッド構造を利用してマルチスケール表現を構築し、マルチスケールのバリエーションを扱う。
次に、意味構造を持つオブジェクトの識別領域をよりよく学習するために、新しいクラス対応トランスフォーマーモジュールを設計する。
論文 参考訳(メタデータ) (2022-01-26T03:50:02Z) - Evaluating Transformer based Semantic Segmentation Networks for
Pathological Image Segmentation [2.7029872968576947]
病理は癌診断において重要な役割を担っている。
コンピュータ支援型病理画像解析において, 様々なCNNを用いた病理画像分割手法が開発されている。
Transformer Neural Network(Transformer)は、新たなディープラーニングパラダイムとして、画像全体にわたるグローバルな長距離依存関係をキャプチャする、ユニークなメリットを示している。
論文 参考訳(メタデータ) (2021-08-26T18:46:43Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。