論文の概要: Segmentation-Consistent Probabilistic Lesion Counting
- arxiv url: http://arxiv.org/abs/2204.05276v1
- Date: Mon, 11 Apr 2022 17:26:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-12 15:56:08.065088
- Title: Segmentation-Consistent Probabilistic Lesion Counting
- Title(参考訳): セグメンテーション一貫性確率的病変数
- Authors: Julien Schroeter, Chelsea Myers-Colet, Douglas L Arnold, Tal Arbel
- Abstract要約: 病変数は、疾患の重症度、患者の予後、治療効果の重要な指標であるが、医療画像の課題として数えられることは、しばしばセグメンテーションを支持するために見過ごされる。
本研究は、病変分割予測と病変数確率分布を一貫した方法でマッピングする、新しい連続微分可能な関数を導入する。
- 参考スコア(独自算出の注目度): 3.6513059119482145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lesion counts are important indicators of disease severity, patient
prognosis, and treatment efficacy, yet counting as a task in medical imaging is
often overlooked in favor of segmentation. This work introduces a novel
continuously differentiable function that maps lesion segmentation predictions
to lesion count probability distributions in a consistent manner. The proposed
end-to-end approach--which consists of voxel clustering, lesion-level voxel
probability aggregation, and Poisson-binomial counting--is non-parametric and
thus offers a robust and consistent way to augment lesion segmentation models
with post hoc counting capabilities. Experiments on Gadolinium-enhancing lesion
counting demonstrate that our method outputs accurate and well-calibrated count
distributions that capture meaningful uncertainty information. They also reveal
that our model is suitable for multi-task learning of lesion segmentation, is
efficient in low data regimes, and is robust to adversarial attacks.
- Abstract(参考訳): 病変数は、疾患の重症度、患者の予後、治療効果の重要な指標であるが、医療画像の課題として数えられることは、しばしばセグメンテーションを支持するために見過ごされる。
本研究は,病変の分節予測と病変数確率分布を一貫した方法でマッピングする,新しい連続的微分可能関数を提案する。
ボクセルクラスタリング,病変レベルのボクセル確率アグリゲーション,ポアソン二項計数からなるエンドツーエンドアプローチは非パラメトリックである。
Gadolinium-enhancing lesion counting の実験により,本手法は有意な不確実性情報を捕捉する精度および校正度の高いカウント分布を出力することを示した。
また,本モデルは病変分割のマルチタスク学習に適しており,低データレシエーションでは効率的であり,敵攻撃に対して堅牢であることも明らかにした。
関連論文リスト
- Assessing Uncertainty Estimation Methods for 3D Image Segmentation under
Distribution Shifts [0.36832029288386137]
本稿では, 分布シフトしたサンプルを検出するために, 最先端ベイズ法と非ベイズ法を併用する可能性について検討する。
後部分布における一様あるいは多様の局面を捉えるために, 3つの異なる不確実性推定法を比較した。
その結果, 後方分布におけるマルチモーダル特性に対処できる手法により, より信頼性の高い不確実性推定が可能であることが示唆された。
論文 参考訳(メタデータ) (2024-02-10T12:23:08Z) - PULASki: Learning inter-rater variability using statistical distances to
improve probabilistic segmentation [36.136619420474766]
本稿では,専門家アノテーションの変動を正確に捉えるバイオメディカルイメージセグメンテーションのためのPULASkiを提案する。
提案手法では,条件付き変分オートエンコーダ構造における統計的距離に基づいて,損失関数を改良した。
また,本手法は多ラベルセグメンテーションタスクにも適用可能であり,血行動態モデリングなどの下流タスクにも有用である。
論文 参考訳(メタデータ) (2023-12-25T10:31:22Z) - Interpretable Causal Inference for Analyzing Wearable, Sensor, and Distributional Data [62.56890808004615]
本研究では,信頼性とロバストな意思決定を確実にする,分散データ解析の解釈可能な手法を開発した。
ADD MALTSの有用性について,糖尿病リスク軽減のための連続グルコースモニターの有効性について検討した。
論文 参考訳(メタデータ) (2023-12-17T00:42:42Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Self-Supervised Few-Shot Learning for Ischemic Stroke Lesion
Segmentation [8.668715385199889]
トレーニング中に1つの注記標本のみを用いて,虚血性病変の分節に対する数発のセグメンテーション法を提案する。
我々はComputd Tomography Perfusion scanから生成されたカラーコードパラメトリックマップを利用する。
注記1例につき平均Diceスコア0.58が虚血性病変の分節に対して達成される。
論文 参考訳(メタデータ) (2023-03-02T15:10:08Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Heatmap Regression for Lesion Detection using Pointwise Annotations [3.6513059119482145]
本稿では,点ラベルのみに依存する病変検出手法を提案する。
熱マップ回帰を用いてトレーニングした本モデルでは, 確率論的手法により, 種々の病変を検出できる。
Gad病変検出実験の結果,高額なセグメンテーションラベルのトレーニングと比較し,ポイントベース法と競合する結果が得られた。
論文 参考訳(メタデータ) (2022-08-11T17:26:09Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
異なるデータセットにまたがるトランスファー可能なドメイン不変知識を探索できる,新しい弱い教師付き病巣移動フレームワークを提案する。
wasserstein quantified transferability frameworkは、広い範囲の転送可能なコンテキスト依存性を強調するために開発されている。
新規な自己監督型擬似ラベル生成器は、送信困難かつ転送容易なターゲットサンプルの両方に対して、確実な擬似ピクセルラベルを等しく提供するように設計されている。
論文 参考訳(メタデータ) (2020-12-08T02:26:03Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
我々は、時系列データをクラスタリングするためのディープラーニングアプローチを開発し、各クラスタは、同様の将来的な結果を共有する患者から構成される。
2つの実世界のデータセットに対する実験により、我々のモデルは最先端のベンチマークよりも優れたクラスタリング性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-15T20:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。