論文の概要: MONCE Tracking Metrics: a comprehensive quantitative performance
evaluation methodology for object tracking
- arxiv url: http://arxiv.org/abs/2204.05280v1
- Date: Mon, 11 Apr 2022 17:32:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-12 17:22:21.133873
- Title: MONCE Tracking Metrics: a comprehensive quantitative performance
evaluation methodology for object tracking
- Title(参考訳): monCE Tracking Metrics: オブジェクト追跡のための総合的定量的パフォーマンス評価手法
- Authors: Kenneth Rapko, Wanlin Xie, and Andrew Walsh
- Abstract要約: 本稿では、目標追跡モデル性能ベンチマークと、追跡モデル開発を駆動するための診断情報の両方を提供するMONCE(Multi-Object Non-Contiguous Entities)イメージトラッキングメトリクスのスイートを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating tracking model performance is a complicated task, particularly for
non-contiguous, multi-object trackers that are crucial in defense applications.
While there are various excellent tracking benchmarks available, this work
expands them to quantify the performance of long-term, non-contiguous,
multi-object and detection model assisted trackers. We propose a suite of MONCE
(Multi-Object Non-Contiguous Entities) image tracking metrics that provide both
objective tracking model performance benchmarks as well as diagnostic insight
for driving tracking model development in the form of Expected Average Overlap,
Short/Long Term Re-Identification, Tracking Recall, Tracking Precision,
Longevity, Localization and Absence Prediction.
- Abstract(参考訳): 追跡モデルのパフォーマンスの評価は、特に防衛アプリケーションで重要な非連続的マルチオブジェクトトラッカーにとって、複雑なタスクである。
優れたトラッキングベンチマークはいろいろあるが、この研究は、長期、非連続、マルチオブジェクト、および検出モデル支援トラッカーのパフォーマンスを定量化する。
本研究では,目標追跡モデルの性能ベンチマークと,予測平均重なり,短期的・長期的再同定,追跡リコール,追跡精度,長寿命,位置推定,欠如予測という形での追跡モデル開発のための診断的洞察を提供する,monce(multi-object non-contiguous entities)イメージトラッキング指標のスイートを提案する。
関連論文リスト
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
本稿では,木構造メモリを用いてトラッカーと検出器を動的に関連付け,自己回復を可能にするRTrackerを提案する。
具体的には,正負と負のターゲットサンプルを時系列に保存し,維持する正負のツリー構造メモリを提案する。
我々の中核となる考え方は、正と負の目標カテゴリーの支持サンプルを用いて、目標損失の信頼性評価のための相対的距離に基づく基準を確立することである。
論文 参考訳(メタデータ) (2024-03-28T08:54:40Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring [22.228127377617028]
漁業活動における漁獲監視の目的は、映像から魚の標的をリアルタイムで検出し、追跡し、分類することである。
本稿では,既存の観測中心追跡アルゴリズムに基づく新しいMOT手法を提案する。
本手法は,海洋魚種群およびMOT17種群において,一様外観の追跡目標の性能向上と最先端技術の向上を図っている。
論文 参考訳(メタデータ) (2023-04-10T18:55:10Z) - MotionTrack: Learning Robust Short-term and Long-term Motions for
Multi-Object Tracking [56.92165669843006]
本研究では,短時間から長期間の軌跡を関連づける統合フレームワークで,堅牢な短期・長期動作を学習するMotionTrackを提案する。
密集した群集に対して,各ターゲットの複雑な動きを推定できる,短時間の軌跡から相互作用認識動作を学習するための新しい対話モジュールを設計する。
極端なオクルージョンのために、ターゲットの履歴軌跡から信頼できる長期動作を学習するための新しいRefind Moduleを構築し、中断された軌跡とそれに対応する検出とを関連付けることができる。
論文 参考訳(メタデータ) (2023-03-18T12:38:33Z) - CoCoLoT: Combining Complementary Trackers in Long-Term Visual Tracking [17.2557973738397]
本稿では,長期追跡性能を向上させるために,補完的な視覚トラッカーの特性を組み合わせたCoCoLoTというフレームワークを提案する。
CoCoLoTは、オンライン学習された深層検証モデルを通じて、トラッカーが対象オブジェクトをフォローしているかどうかを認識し、意思決定ポリシーを起動する。
提案手法は広範に評価され、他のいくつかのソリューションとの比較により、最も人気のある視覚的追跡ベンチマークにおいて最先端の手法と競合することが判明した。
論文 参考訳(メタデータ) (2022-05-09T13:25:13Z) - Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking [82.34356879078955]
本稿では,セグメント化に基づく変形可能な視覚追跡手法の識別を強化するために,コンパクトなメモリ埋め込みを提案する。
DAVIS 2017ベンチマークでは,D3SやSiamMaskなどのセグメンテーションベースのトラッカーよりも優れている。
論文 参考訳(メタデータ) (2021-11-23T03:07:12Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
異なる訓練可能なモジュールからなる確率的、マルチモーダル、マルチオブジェクトトラッキングシステムを提案する。
本手法はNuScenes Trackingデータセットの現在の状態を上回っていることを示した。
論文 参考訳(メタデータ) (2020-12-26T15:00:54Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
オンラインマルチオブジェクトトラッキング(MOT)フレームワークの中核的なコンポーネントの1つは、既存のトラックレットと新しい検出を関連付けることである。
そこで我々は,トラックレットが自然運動を表す可能性を直接測定することにより,トラックレットの提案を評価する確率論的自己回帰生成モデルを提案する。
論文 参考訳(メタデータ) (2020-04-16T06:43:11Z) - Unsupervised Multiple Person Tracking using AutoEncoder-Based Lifted
Multicuts [11.72025865314187]
最小限の視覚的特徴とリフトマルチカットに基づく教師なし多重物体追跡手法を提案する。
提案したアノテーションを使わずにトレーニングされているにもかかわらず,我々のモデルは,歩行者追跡のための挑戦的なMOTベンチマークにおいて,競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2020-02-04T09:42:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。