Principled inference of hyperedges and overlapping communities in
hypergraphs
- URL: http://arxiv.org/abs/2204.05646v1
- Date: Tue, 12 Apr 2022 09:13:46 GMT
- Title: Principled inference of hyperedges and overlapping communities in
hypergraphs
- Authors: Martina Contisciani, Federico Battiston, Caterina De Bacco
- Abstract summary: We propose a framework based on statistical inference to characterize the structural organization of hypergraphs.
We show strong performance in hyperedge prediction tasks, detecting communities well aligned with the information carried by interactions, and robustness against addition of noisy hyperedges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hypergraphs, encoding structured interactions among any number of system
units, have recently proven a successful tool to describe many real-world
biological and social networks. Here we propose a framework based on
statistical inference to characterize the structural organization of
hypergraphs. The method allows to infer missing hyperedges of any size in a
principled way, and to jointly detect overlapping communities in presence of
higher-order interactions. Furthermore, our model has an efficient numerical
implementation, and it runs faster than dyadic algorithms on pairwise records
projected from higher-order data. We apply our method to a variety of
real-world systems, showing strong performance in hyperedge prediction tasks,
detecting communities well aligned with the information carried by
interactions, and robustness against addition of noisy hyperedges. Our approach
illustrates the fundamental advantages of a hypergraph probabilistic model when
modeling relational systems with higher-order interactions.
Related papers
- SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
arXiv Detail & Related papers (2024-10-04T07:49:57Z) - Interaction Event Forecasting in Multi-Relational Recursive HyperGraphs: A Temporal Point Process Approach [12.142292322071299]
This work addresses the problem of forecasting higher-order interaction events in multi-relational recursive hypergraphs.
The proposed model, textitRelational Recursive Hyperedge Temporal Point Process (RRHyperTPP), uses an encoder that learns a dynamic node representation based on the historical interaction patterns.
We have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
arXiv Detail & Related papers (2024-04-27T15:46:54Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [55.65482030032804]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
Our approach infers dynamically evolving relation graphs and hypergraphs to capture the evolution of relations, which the trajectory predictor employs to generate future states.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Nonparametric Embeddings of Sparse High-Order Interaction Events [21.758306786651772]
High-order interaction events are common in real-world applications.
We propose Non Embeddings of Sparse High-order interaction events.
We develop an efficient, scalable model inference algorithm.
arXiv Detail & Related papers (2022-07-08T01:25:34Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Measuring dynamical systems on directed hyper-graphs [0.0]
We analyze the interplay between the structure of a directed hypergraph and a linear dynamical system, a random walk, defined on it.
We apply known measures to pairwise structures, such as the transition matrix, and determine a family of measures that are amenable to such procedure.
arXiv Detail & Related papers (2022-02-25T16:39:40Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
In this paper, we encode the neighborhood information with a graph-induced Gaussian distribution, and propose to integrate the two types of information with a graph-driven generative model.
Under the approximation, we prove that the training objective can be decomposed into terms involving only singleton or pairwise documents, enabling the model to be trained as efficiently as uncorrelated ones.
arXiv Detail & Related papers (2021-05-27T11:29:03Z) - Community Detection in General Hypergraph via Graph Embedding [1.4213973379473654]
We propose a novel method for detecting community structure in general hypergraph networks, uniform or non-uniform.
The proposed method introduces a null to augment a non-uniform hypergraph into a uniform multi-hypergraph, and then embeds the multi-hypergraph in a low-dimensional vector space.
arXiv Detail & Related papers (2021-03-28T03:23:03Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.