Interaction Event Forecasting in Multi-Relational Recursive HyperGraphs: A Temporal Point Process Approach
- URL: http://arxiv.org/abs/2404.17943v1
- Date: Sat, 27 Apr 2024 15:46:54 GMT
- Title: Interaction Event Forecasting in Multi-Relational Recursive HyperGraphs: A Temporal Point Process Approach
- Authors: Tony Gracious, Ambedkar Dukkipati,
- Abstract summary: This work addresses the problem of forecasting higher-order interaction events in multi-relational recursive hypergraphs.
The proposed model, textitRelational Recursive Hyperedge Temporal Point Process (RRHyperTPP), uses an encoder that learns a dynamic node representation based on the historical interaction patterns.
We have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
- Score: 12.142292322071299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling the dynamics of interacting entities using an evolving graph is an essential problem in fields such as financial networks and e-commerce. Traditional approaches focus primarily on pairwise interactions, limiting their ability to capture the complexity of real-world interactions involving multiple entities and their intricate relationship structures. This work addresses the problem of forecasting higher-order interaction events in multi-relational recursive hypergraphs. This is done using a dynamic graph representation learning framework that can capture complex relationships involving multiple entities. The proposed model, \textit{Relational Recursive Hyperedge Temporal Point Process} (RRHyperTPP) uses an encoder that learns a dynamic node representation based on the historical interaction patterns and then a hyperedge link prediction based decoder to model the event's occurrence. These learned representations are then used for downstream tasks involving forecasting the type and time of interactions. The main challenge in learning from hyperedge events is that the number of possible hyperedges grows exponentially with the number of nodes in the network. This will make the computation of negative log-likelihood of the temporal point process expensive, as the calculation of survival function requires a summation over all possible hyperedges. In our work, we use noise contrastive estimation to learn the parameters of our model, and we have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
Related papers
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
Temporal point processes(TPPs) are the standard method for modeling such.
Existing TPP models have focused on the conditional distribution of future events instead of explicitly modeling event interactions, imposing challenges for event predictions.
We propose a novel approach that leverages a Neural Inference (NRI) to learn a graph that infers interactions while simultaneously learning dynamics patterns from observational data.
arXiv Detail & Related papers (2023-09-06T09:47:03Z) - Neural Temporal Point Process for Forecasting Higher Order and Directional Interactions [10.803714426078642]
We propose a deep neural network-based model textitDirected HyperNode Temporal Point Process for directed hyperedge event forecasting.
Our proposed technique reduces the search space by initially forecasting the nodes at which events will be observed.
Based on these, it generates candidate hyperedges, which are then used by a hyperedge predictor to identify the ground truth.
arXiv Detail & Related papers (2023-01-28T14:32:14Z) - Multi-Task Edge Prediction in Temporally-Dynamic Video Graphs [16.121140184388786]
We propose MTD-GNN, a graph network for predicting temporally-dynamic edges for multiple types of relations.
We show that modeling multiple relations in our temporal-dynamic graph network can be mutually beneficial.
arXiv Detail & Related papers (2022-12-06T10:41:00Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Principled inference of hyperedges and overlapping communities in
hypergraphs [0.0]
We propose a framework based on statistical inference to characterize the structural organization of hypergraphs.
We show strong performance in hyperedge prediction tasks, detecting communities well aligned with the information carried by interactions, and robustness against addition of noisy hyperedges.
arXiv Detail & Related papers (2022-04-12T09:13:46Z) - Dynamic Representation Learning with Temporal Point Processes for
Higher-Order Interaction Forecasting [8.680676599607123]
This paper proposes a temporal point process model for hyperedge prediction to address these problems.
As far as our knowledge, this is the first work that uses the temporal point process to forecast hyperedges in dynamic networks.
arXiv Detail & Related papers (2021-12-19T14:24:37Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.