AI-Powered Algorithm-Centric Quantum Processor Topology Design
- URL: http://arxiv.org/abs/2412.13805v1
- Date: Wed, 18 Dec 2024 12:53:16 GMT
- Title: AI-Powered Algorithm-Centric Quantum Processor Topology Design
- Authors: Tian Li, Xiao-Yue Xu, Chen Ding, Tian-Ci Tian, Wei-You Liao, Shuo Zhang, He-Liang Huang,
- Abstract summary: We introduce a novel approach to dynamically tailor qubit topologies to the unique specifications of individual quantum circuits.
Our method marks a significant departure from previous methods that have been constrained to mapping circuits onto a fixed processor topology.
- Score: 10.53761034955718
- License:
- Abstract: Quantum computing promises to revolutionize various fields, yet the execution of quantum programs necessitates an effective compilation process. This involves strategically mapping quantum circuits onto the physical qubits of a quantum processor. The qubits' arrangement, or topology, is pivotal to the circuit's performance, a factor that often defies traditional heuristic or manual optimization methods due to its complexity. In this study, we introduce a novel approach leveraging reinforcement learning to dynamically tailor qubit topologies to the unique specifications of individual quantum circuits, guiding algorithm-driven quantum processor topology design for reducing the depth of mapped circuit, which is particularly critical for the output accuracy on noisy quantum processors. Our method marks a significant departure from previous methods that have been constrained to mapping circuits onto a fixed processor topology. Experiments demonstrate that we have achieved notable enhancements in circuit performance, with a minimum of 20\% reduction in circuit depth in 60\% of the cases examined, and a maximum enhancement of up to 46\%. Furthermore, the pronounced benefits of our approach in reducing circuit depth become increasingly evident as the scale of the quantum circuits increases, exhibiting the scalability of our method in terms of problem size. This work advances the co-design of quantum processor architecture and algorithm mapping, offering a promising avenue for future research and development in the field.
Related papers
- Redesign Quantum Circuits on Quantum Hardware Device [6.627541720714792]
We present a new architecture which enables one to redesign large-scale quantum circuits on quantum hardware.
For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits.
The feasibility of our approach is demonstrated by the excellent results of these applications, which are implemented both in classical computers and current NISQ hardware.
arXiv Detail & Related papers (2024-12-30T12:05:09Z) - Circuit Folding: Modular and Qubit-Level Workload Management in Quantum-Classical Systems [5.6744988702710835]
Circuit knitting is a technique that offloads some of the computational burden from quantum circuits.
We propose CiFold, a novel graph-based system that identifies and leverages repeated structures within quantum circuits.
Our system has been extensively evaluated across various quantum algorithms, achieving up to 799.2% reduction in quantum resource usage.
arXiv Detail & Related papers (2024-12-24T23:34:17Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Distributed quantum architecture search [0.0]
Variational quantum algorithms, inspired by neural networks, have become a novel approach in quantum computing.
Quantum architecture search tackles this by adjusting circuit structures along with gate parameters to automatically discover high-performance circuit structures.
We propose an end-to-end distributed quantum architecture search framework, where we aim to automatically design distributed quantum circuit structures for interconnected quantum processing units with specific qubit connectivity.
arXiv Detail & Related papers (2024-03-10T13:28:56Z) - Symmetry-Based Quantum Circuit Mapping [2.51705778594846]
We introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors.
This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation.
arXiv Detail & Related papers (2023-10-27T10:04:34Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.