論文の概要: Sapinet: A sparse event-based spatiotemporal oscillator for learning in
the wild
- arxiv url: http://arxiv.org/abs/2204.06216v1
- Date: Wed, 13 Apr 2022 07:37:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 03:01:55.289926
- Title: Sapinet: A sparse event-based spatiotemporal oscillator for learning in
the wild
- Title(参考訳): sapinet: ワイルド学習のためのスパースなイベントベース時空間発振器
- Authors: Ayon Borthakur
- Abstract要約: Sapinetは、悲惨なことを忘れずに複数の入力をワンショットで学習するオンライン学習だ。
Sapinetの主な特徴は、データの正規化、モデルのスケーリング、データの分類、デノイングである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce Sapinet -- a spike timing (event)-based multilayer neural
network for \textit{learning in the wild} -- that is: one-shot online learning
of multiple inputs without catastrophic forgetting, and without the need for
data-specific hyperparameter retuning. Key features of Sapinet include data
regularization, model scaling, data classification, and denoising. The model
also supports stimulus similarity mapping. We propose a systematic method to
tune the network for performance. We studied the model performance on different
levels of odor similarity, gaussian and impulse noise. Sapinet achieved high
classification accuracies on standard machine olfaction datasets without the
requirement of fine tuning for a specific dataset.
- Abstract(参考訳): Sapinet - スパイクタイミング(イベント)ベースの多層ニューラルネットワークで,‘野生でのtextit{learning’ – 破滅的な忘れをせずに,データ固有のハイパーパラメータの修正を必要とせずに,複数の入力をワンショットでオンライン学習する。
sapinetの主な機能は、データレギュライゼーション、モデルスケーリング、データ分類、デノージングである。
このモデルは刺激類似性マッピングもサポートする。
本稿では,性能向上のためのネットワークチューニング手法を提案する。
各種臭気類似度, ガウス音, インパルス音のモデル性能について検討した。
sapinetは、特定のデータセットの微調整を必要とせずに、標準機械の嗅覚データセットで高い分類精度を達成した。
関連論文リスト
- Noise-Resilient Unsupervised Graph Representation Learning via Multi-Hop Feature Quality Estimation [53.91958614666386]
グラフニューラルネットワーク(GNN)に基づく教師なしグラフ表現学習(UGRL)
マルチホップ特徴量推定(MQE)に基づく新しいUGRL法を提案する。
論文 参考訳(メタデータ) (2024-07-29T12:24:28Z) - Embedding stochastic differential equations into neural networks via
dual processes [0.0]
本稿では、微分方程式の予測のためのニューラルネットワーク構築のための新しいアプローチを提案する。
提案手法は入力と出力のデータセットを必要としない。
実演として,Ornstein-Uhlenbeck プロセスと van der Pol システムのためのニューラルネットワークを構築した。
論文 参考訳(メタデータ) (2023-06-08T00:50:16Z) - Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
本稿では,ネットワーク特性予測のためのニューラルネットワーク重み符号化手法を提案する。
我々のアプローチは、混合アーキテクチャのモデル動物園でニューラルネットワークを符号化することができる。
ニューラルネットワークのプロパティ予測には,クロスデータセットとクロスアーキテクチャという,2つの新しいタスクを導入する。
論文 参考訳(メタデータ) (2023-05-26T04:34:28Z) - Frequency and Scale Perspectives of Feature Extraction [5.081561820537235]
ニューラルネットワークの周波数とスケールに対する感度を分析する。
ニューラルネットワークは低周波と中周波のバイアスを持つが、異なるクラスに対して異なる周波数帯域を好む。
これらの観察により、ニューラルネットワークは様々なスケールと周波数で特徴を抽出する能力を学ぶ必要があるという仮説が導かれる。
論文 参考訳(メタデータ) (2023-02-24T06:37:36Z) - The Contextual Lasso: Sparse Linear Models via Deep Neural Networks [5.607237982617641]
本研究では,空間的特徴の関数として空間的パターンと係数が変化するような説明的特徴に疎線形モデルに適合する新しい統計的推定器を開発する。
実データと合成データに関する広範な実験は、学習されたモデルは、非常に透明であり、通常のラッソよりもスペーサーであることを示している。
論文 参考訳(メタデータ) (2023-02-02T05:00:29Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
本稿では,トレーニングラベルの比率が低下した分類タスクにおいて,過パラメータ化深層ネットワークの堅牢なトレーニングを行うための原則的手法を提案する。
ラベルノイズはクリーンデータから学んだネットワークと疎結合なので、ノイズをモデル化してデータから分離することを学びます。
注目すべきは、このような単純な手法を用いて訓練を行う場合、様々な実データに対してラベルノイズに対する最先端のテスト精度を示すことである。
論文 参考訳(メタデータ) (2022-02-28T18:50:10Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Train your classifier first: Cascade Neural Networks Training from upper
layers to lower layers [54.47911829539919]
我々は,高品質な分類器を探索するアルゴリズムとして見ることのできる,新しいトップダウン学習手法を開発した。
本研究では,自動音声認識(ASR)タスクと言語モデリングタスクについて検討した。
提案手法は,Wall Street Journal 上でのリカレントニューラルネットワーク ASR モデル,Switchboard 上での自己注意型 ASR モデル,WikiText-2 上での AWD-LSTM 言語モデルなど,一貫して改善されている。
論文 参考訳(メタデータ) (2021-02-09T08:19:49Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - File Classification Based on Spiking Neural Networks [0.5065947993017157]
スパイクニューラルネットワーク(SNN)に基づく大規模データセットにおけるファイル分類システムを提案する。
提案システムは、推論タスクに対する古典的機械学習アルゴリズムの代替として有効なものである可能性がある。
論文 参考訳(メタデータ) (2020-04-08T11:50:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。