Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques
- URL: http://arxiv.org/abs/2204.06369v1
- Date: Wed, 13 Apr 2022 13:26:56 GMT
- Title: Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques
- Authors: Medina Bandic, Sebastian Feld, Carmen G. Almudever
- Abstract summary: We will provide an overview on current full-stack quantum computing systems.
We will emphasize the need for tight co-design among adjacent layers as well as vertical cross-layer design.
- Score: 1.3496450124792878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The progress in developing quantum hardware with functional quantum
processors integrating tens of noisy qubits, together with the availability of
near-term quantum algorithms has led to the release of the first quantum
computers. These quantum computing systems already integrate different software
and hardware components of the so-called "full-stack", bridging quantum
applications to quantum devices. In this paper, we will provide an overview on
current full-stack quantum computing systems. We will emphasize the need for
tight co-design among adjacent layers as well as vertical cross-layer design to
extract the most from noisy intermediate-scale quantum (NISQ) processors which
are both error-prone and severely constrained in resources. As an example of
co-design, we will focus on the development of hardware-aware and
algorithm-driven compilation techniques.
Related papers
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM Quantum Computers is described covering both the QPU and the rest of the full-stack quantum computer.
The focus is on a 20-qubit quantum computer featuring the Garnet QPU and its architecture, which we will scale up to 150 qubits.
We present QPU and system-level benchmarks, including a median 2-qubit gate fidelity of 99.5% and genuinely entangling all 20 qubits in a Greenberger-Horne-Zeilinger (GHZ) state.
arXiv Detail & Related papers (2024-08-22T14:26:10Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Quantum computing hardware for HEP algorithms and sensing [36.67390040418004]
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms.
Fermilab's Superconducting Quantum Materials and Systems (SQMS) Center is dedicated to providing breakthroughs in quantum computing and sensing.
We discuss the two most promising superconducting quantum architectures for HEP algorithms, i.e. three-level systems (qutrits) supported by transmon devices coupled to planar devices and multi-level systems (qudits with arbitrary N energy levels) supported by superconducting 3D cavities.
arXiv Detail & Related papers (2022-04-19T01:37:36Z) - Quantum simulation with just-in-time compilation [0.0]
We present a first attempt to perform circuit-based quantum simulation using the just-in-time (JIT) compilation technique.
Qibojit is a new module for the Qibo quantum computing framework, which uses a just-in-time compilation approach through Python.
arXiv Detail & Related papers (2022-03-16T18:00:00Z) - Quantum Algorithms and Simulation for Parallel and Distributed Quantum
Computing [0.0]
A viable approach for building large-scale quantum computers is to interlink small-scale quantum computers with a quantum network.
We present our software framework called Interlin-q, a simulation platform that aims to simplify designing and verifying parallel and distributed quantum algorithms.
arXiv Detail & Related papers (2021-06-12T19:41:48Z) - Software tools for quantum control: Improving quantum computer
performance through noise and error suppression [3.6508609114589317]
We introduce software tools for the application and integration of quantum control in quantum computing research.
We provide an overview of a set of python-based classical software tools for creating and deploying optimized quantum control solutions.
We describe a software architecture leveraging both high-performance distributed cloud computation and local custom integration into hardware systems.
arXiv Detail & Related papers (2020-01-13T04:34:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.