Quantum Algorithms and Simulation for Parallel and Distributed Quantum
Computing
- URL: http://arxiv.org/abs/2106.06841v3
- Date: Thu, 7 Apr 2022 09:06:24 GMT
- Title: Quantum Algorithms and Simulation for Parallel and Distributed Quantum
Computing
- Authors: Rhea Parekh, Andrea Ricciardi, Ahmed Darwish, Stephen DiAdamo
- Abstract summary: A viable approach for building large-scale quantum computers is to interlink small-scale quantum computers with a quantum network.
We present our software framework called Interlin-q, a simulation platform that aims to simplify designing and verifying parallel and distributed quantum algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A viable approach for building large-scale quantum computers is to interlink
small-scale quantum computers with a quantum network to create a larger
distributed quantum computer. When designing quantum algorithms for such a
distributed quantum computer, one can make use of the added parallelization and
distribution abilities inherent in the system. An added difficulty to then
overcome for distributed quantum computing is that a complex control system to
orchestrate the various components is required. In this work, we aim to address
these issues. We explicitly define what it means for a quantum algorithm to be
distributed and then present various quantum algorithms that fit the
definition. We discuss potential benefits and propose a high-level scheme for
controlling the system. With this, we present our software framework called
Interlin-q, a simulation platform that aims to simplify designing and verifying
parallel and distributed quantum algorithms. We demonstrate Interlin-q by
implementing some of the discussed algorithms using Interlin-q and layout
future steps for developing Interlin-q into a control system for distributed
quantum computers.
Related papers
- Distributed Quantum Computing in Silicon [40.16556091789959]
We present preliminary demonstrations of some key distributed quantum computing protocols on silicon T centres in isotopically-enriched silicon.
We demonstrate the distribution of entanglement between modules and consume it to apply a teleported gate sequence.
arXiv Detail & Related papers (2024-06-03T18:02:49Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
We will provide an overview on current full-stack quantum computing systems.
We will emphasize the need for tight co-design among adjacent layers as well as vertical cross-layer design.
arXiv Detail & Related papers (2022-04-13T13:26:56Z) - Divide and Conquer for Combinatorial Optimization and Distributed
Quantum Computation [3.8221353389253676]
We introduce the Quantum Divide and Conquer Algorithm (QDCA), a hybrid variational approach to mapping large optimization problems onto distributed quantum architectures.
This is achieved through the combined use of graph partitioning and quantum circuit cutting.
We simulate the QDCA on instances of the Maximum Independent Set problem and find that it is able to outperform similar classical algorithms.
arXiv Detail & Related papers (2021-07-15T18:00:32Z) - Verification of Distributed Quantum Programs [6.266176871677275]
We propose a CSP-like distributed programming language to facilitate the specification and verification of distributed quantum systems.
The effectiveness of the logic is demonstrated by its applications in the verification of quantum teleportation and local implementation of non-local CNOT gates.
arXiv Detail & Related papers (2021-04-30T07:23:55Z) - Distributed Quantum Computing and Network Control for Accelerated VQE [0.0]
We consider an approach for distributing the accelerated variational quantum eigensolver (AVQE) algorithm over arbitrary sized - in terms of number of qubits - distributed quantum computers.
We propose an architecture for a distributed quantum control system in the settings of centralized and decentralized network control.
arXiv Detail & Related papers (2021-01-07T11:50:24Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.